Latest News More News

Recent Articles More Articles

Article

26 July 2024

Current and Future Costs of Storage for Electricity in a Decarbonized Electricity System

As power systems globally are transitioning from fossil fuels to renewable sources, integrating energy storage becomes imperative to balance variable renewable electricity generation. The core objective of this paper is to conduct a comprehensive cost assessment of selected energy storage technologies from 2023 to 2050, focusing on the Austrian electricity market. Our method combines techno-economic assessment with the technological learning method to integrate various storage technologies into a renewable electricity system, using scenarios that account for decarbonization goals. Results indicate that pumped storage hydro exhibits none or negative learning effects, while lithium-ion batteries demonstrate significant investment cost decreases. Despite investment cost reductions, underground hydrogen storage continues to incur high total costs per kWh discharged due to low roundtrip efficiency, suggesting its future outlook depends on seasonal storage needs in fossil-free power systems. An important finding of this analysis underscores the importance of optimizing the ratio of electricity demand, renewable generation expansion and storage deployment for cost-effectiveness. Excessive storage deployment leads to lower utilization and higher costs, emphasizing the necessity of at least 1500 full-load hours for profitable operation across all storage systems. Strategic planning for optimal storage deployment is emphasized to optimize utilization and minimize costs.

Communication

26 July 2024

The Project of Constructive Anthropology in Russian Empiriocriticism

The article analyzes the main provisions of constructive anthropology developed in Russian empirio-criticism in the first quarter of the 20th century. The justification of non-metaphysical philosophy, which developed the “problematic” approach to cognition, made the new understanding of man possible. From this point of view, the essence of man is not a metaphysical constant, but is modeled on the basis of an appropriate organization of experience; the essence of man is determined by his existence and is constantly changing; the essence of man can be consciously adapted by directing his development and giving him the necessary characteristics; man as an essence is always man’s project, or scientific and philosophical concept; only by understanding man as a dynamic project can we justify free will and man’s capacity for creation. The project of constructive anthropology is fundamentally different from the philosophical anthropology developed in Germany in the 20th century by Max Scheler and Helmuth Plessner, since the latter is essentially an attempt to preserve the traditional metaphysical interpretation of man.

Article

25 July 2024

A Distributed Framework for Persistent Wildfire Monitoring with Fixed Wing UAVs

Wildfires have proven to be a significantly exigent issue over the past decades. An increasing amount of research has recently been focused on the use of Unmanned Aerial Vehicles (UAVs) and multi-UAV systems for wildfire monitoring. This work focuses on the development of a decentralized framework for the purpose of monitoring active wildfires and their surrounding areas with fixed wing UAVs. It proposes a distributed fire data update methodology, a new formation algorithm based on virtual forces, fine-tuned by a Genetic Algorithm (GA), to arrange virtual agents into the monitoring area, and a control strategy to safely and efficiently guide fixed wing UAVs to loiter over the structured virtual agents. The system is tested in Software In The Loop (SITL) simulation with up to eight UAVs. The simulation results demonstrate the effectiveness of the system in monitoring the fire in a persistent manner and providing updated situational awareness data. The experiments show that the proposed framework is able to achieve and maintain coverage up to 100% over the area of interest, and very accurate fire representation. However, the performance is decreased for the experiments with low UAV numbers and large fire sizes.

Article

22 July 2024

Aging-Associated Molecular Changes in Human Alveolar Type I Cells

Human alveolar type I (AT1) cells are specialized epithelial cells that line the alveoli in the lungs where gas exchange occurs. The primary function of AT1 cells is not only to facilitate efficient gas exchange between the air and the blood in the lungs, but also to contribute to the structural integrity of the alveoli to maintain lung function and homeostasis. Aging has notable effects on the structure, function, and regenerative capacity of human AT1 cells. However, our understanding of the molecular mechanisms driving these age-related changes in AT1 cells remains limited. Leveraging a recent single-cell transcriptomics dataset we generated on healthy human lungs, we identified a series of significant molecular alterations in AT1 cells from aged lungs. Notably, the aged AT1 cells exhibited increased cellular senescence and chemokine gene expression, alongside diminished epithelial features such as decreases in cell junctions, endocytosis, and pulmonary matrisome gene expression. Gene set analyses also indicated that aged AT1 cells were resistant to apoptosis, a crucial mechanism for turnover and renewal of AT1 cells, thereby ensuring alveolar integrity and function. Further research on these alterations is imperative to fully elucidate the impact on AT1 cells and is indispensable for developing effective therapies to preserve lung function and promote healthy aging.

Review

19 July 2024

Solid Additives to Increase the Service Life of Ceramic Cutting Tool: Methodology and Mechanism

With the development of the manufacturing industry, there is an increasing demand for high-efficiency processing, high-precision processing, and high-temperature processing. The characteristics of ceramic tools, such as high hardness and wear resistance, make them suitable for high-precision processing. Additionally, their excellent high temperature resistance perfectly meets the requirements of high temperature processing. However, ceramic tools have a relatively low strength and are prone to breakage, which limits their application in some high-strength machining fields. Their low toughness and brittleness also lead to easy cracking and reduced tool life, resulting in frequent tool changes that further limit processing efficiency. Therefore, improving the service life of ceramic tool materials is crucial to enhance processing efficiency and achieve significant economic benefits. With the development of material science, solid additives with toughening and strengthening properties have greatly improved the performance of ceramic tool materials and given ceramic tools new life-enhancing properties, such as lubrication and repair. By utilizing the combined action of one or more solid additives and employing surface coating technology, the service life of ceramic cutting tools is significantly extended. This makes the application of ceramic tools in industrial cutting more and more widely, and the demand is also growing rapidly. However, the mechanism and methods of various solid additives to increase the life of ceramic tool materials have not been systematically reviewed. The analysis of the composition and functional properties of ceramic tool materials was used as a basis to summarize the mechanism by which various solid additives improve the service life of ceramic tool materials, and to provide points for attention in their use. The aim is to assist researchers in designing and preparing new ceramic tool materials that can meet processing requirements. Finally, the research status, challenges, and prospects of enhancing the service life of ceramic cutting tools with solid additives are summarized, providing a foundation for further research.

TOP