Latest News More News

Recent Articles More Articles

Article

22 July 2024

Aging-Associated Molecular Changes in Human Alveolar Type I Cells

Human alveolar type I (AT1) cells are specialized epithelial cells that line the alveoli in the lungs where gas exchange occurs. The primary function of AT1 cells is not only to facilitate efficient gas exchange between the air and the blood in the lungs, but also to contribute to the structural integrity of the alveoli to maintain lung function and homeostasis. Aging has notable effects on the structure, function, and regenerative capacity of human AT1 cells. However, our understanding of the molecular mechanisms driving these age-related changes in AT1 cells remains limited. Leveraging a recent single-cell transcriptomics dataset we generated on healthy human lungs, we identified a series of significant molecular alterations in AT1 cells from aged lungs. Notably, the aged AT1 cells exhibited increased cellular senescence and chemokine gene expression, alongside diminished epithelial features such as decreases in cell junctions, endocytosis, and pulmonary matrisome gene expression. Gene set analyses also indicated that aged AT1 cells were resistant to apoptosis, a crucial mechanism for turnover and renewal of AT1 cells, thereby ensuring alveolar integrity and function. Further research on these alterations is imperative to fully elucidate the impact on AT1 cells and is indispensable for developing effective therapies to preserve lung function and promote healthy aging.

Review

19 July 2024

Solid Additives to Increase the Service Life of Ceramic Cutting Tool: Methodology and Mechanism

With the development of the manufacturing industry, there is an increasing demand for high-efficiency processing, high-precision processing, and high-temperature processing. The characteristics of ceramic tools, such as high hardness and wear resistance, make them suitable for high-precision processing. Additionally, their excellent high temperature resistance perfectly meets the requirements of high temperature processing. However, ceramic tools have a relatively low strength and are prone to breakage, which limits their application in some high-strength machining fields. Their low toughness and brittleness also lead to easy cracking and reduced tool life, resulting in frequent tool changes that further limit processing efficiency. Therefore, improving the service life of ceramic tool materials is crucial to enhance processing efficiency and achieve significant economic benefits. With the development of material science, solid additives with toughening and strengthening properties have greatly improved the performance of ceramic tool materials and given ceramic tools new life-enhancing properties, such as lubrication and repair. By utilizing the combined action of one or more solid additives and employing surface coating technology, the service life of ceramic cutting tools is significantly extended. This makes the application of ceramic tools in industrial cutting more and more widely, and the demand is also growing rapidly. However, the mechanism and methods of various solid additives to increase the life of ceramic tool materials have not been systematically reviewed. The analysis of the composition and functional properties of ceramic tool materials was used as a basis to summarize the mechanism by which various solid additives improve the service life of ceramic tool materials, and to provide points for attention in their use. The aim is to assist researchers in designing and preparing new ceramic tool materials that can meet processing requirements. Finally, the research status, challenges, and prospects of enhancing the service life of ceramic cutting tools with solid additives are summarized, providing a foundation for further research.

Perspective

19 July 2024

Disentangling Human Nature: Environment, Evolution and Our Existential Predicament

Throughout our entire evolutionary history, the physical environment has played a significant role in shaping humans’ subsistence adaptations. As early humans began to colonise novel biomes and construct ecological niches, their behavioural flexibility appeared as an unquestionable fact. During the Late Pleistocene-Holocene transition, the shift from foraging to farming radically altered ecosystem services, resulting in increased exposure to zoonotic pathogens and the emergence of structural inequalities that pervade our current human condition in the Anthropocene epoch. The article seeks to use an anthropological biosocial analysis to explore the diverse evolutionary paths humans have taken, which in turn shape their relationships with the natural world. Given the enigmatic nature of human behavior, it is essential to examine it holistically to understand how different subsistence patterns (e.g., intensive agriculture, foraging, and horticulture) have influenced resilience and adaptation to environmental challenges.

Review

16 July 2024

Mitochondrial Damage and Epithelial-Mesenchymal Transition as Major Triggers of the Development of Idiopathic Pulmonary Fibrosis

Idiopathic pulmonary fibrosis (IPF) is a type of interstitial pneumonia with an unknown cause that progresses gradually, primarily affecting the elderly. The presence of fibrosis has significant implications for individuals with reduced lung compliance, resulting in decreased quality of life and limited survival. Although the exact mechanism remains unclear, researchers have investigated various factors, such as senescent telomerase replication and abnormal lung stem cell differentiation, to understand the root cause. Extensive research has consistently shown that IPF is closely linked to the dysfunction of alveolar epithelial cells. Current scientific studies on IPF cover a range of aspects including oxidative stress, endoplasmic reticulum stress, mitochondrial damage, and iron-induced apoptosis. By examining these mechanisms, a comprehensive model has been developed that explains the process of IPF. Oxidative stress is identified as the primary trigger, followed by mitochondrial damage as a central component, leading to the mesenchymal transformation of alveolar epithelial cells as the ultimate outcome. This model is expected to serve as a valuable reference for understanding the mechanism of IPF and guiding future drug development efforts.

Article

15 July 2024

Investigation of High Vibration Phenomena in Steam Turbine: An Experimental Exploration into Root Causes and Material Analysis

The steam turbine is a rotating device subject to axial and radial shaft shifts that can induce vibrations during operation. Tools such as monitoring systems and proximity probe sensors are essential to monitoring these vibrations. High vibrations affect the machine’s performance, increasing the risk of malfunctions and reducing its lifespan, and also pose risks to operational and maintenance personnel. The intensified vibrations in the bearing pedestals signify the underlying issues with the machine’s normal operation. Consequently, problems such as rotor imbalance, coupling misalignment, mechanical looseness, material failure, and bent shaft may be caused. In the current study, the latest field-proven automatic diagnostic of rotary equipment (ADRE 408) data acquisition system is installed by Bentley Nevada to investigate the root cause of high vibration. This advanced diagnostic system facilitates a comprehensive assessment, enabling us to effectively identify and address underlying problems. Hence, the current research includes a thorough diagnosis of the underlying problems to attenuate the risks of high vibrations in the steam turbine, coupled with strategic maintenance planning and corrective actions.

TOP