Open Access
ISSN: 3079-4935 (Online)
3079-4927 (Print)
Institute of Intelligent Rehabilitation Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
The recovery of hand function in chronic stroke survivors is challenging because of finger complexity and post-stroke spasticity. This study developed iPARKO-2, a novel device that simulates the manual finger extensor facilitation technique while overcoming the limitations of the original device. iPARKO-2 enables the simultaneous fixation of the index through the little fingers and applies resistance from the proximal phalanges, allowing training in patients with strong fingertip spasticity. This study is a pilot study aimed at technical validation and feasibility. Five participants underwent training at three distinct target-pushing force levels. Concurrently, their active range of motion and extensor muscle activity were measured. The results show a direct correlation between the increased pushing force and the improvement in total active motion. Furthermore, the level of muscle activity exhibited a positive correlation with the extent of the observed improvement. iPARKO-2 also reduced the fixation time and enhanced usability. These findings suggest that iPARKO-2 effectively enhances voluntary hand movements and that pushing force is a key factor in determining training efficacy.
The recovery of hand function in chronic stroke survivors is challenging because of finger complexity and post-stroke spasticity. This study developed iPARKO-2, a novel device that simulates the manual finger extensor facilitation technique while overcoming the limitations of the original device. iPARKO-2 enables the simultaneous fixation of the index through the little fingers and applies resistance from the proximal phalanges, allowing training in patients with strong fingertip spasticity. This study is a pilot study aimed at technical validation and feasibility. Five participants underwent training at three distinct target-pushing force levels. Concurrently, their active range of motion and extensor muscle activity were measured. The results show a direct correlation between the increased pushing force and the improvement in total active motion. Furthermore, the level of muscle activity exhibited a positive correlation with the extent of the observed improvement. iPARKO-2 also reduced the fixation time and enhanced usability. These findings suggest that iPARKO-2 effectively enhances voluntary hand movements and that pushing force is a key factor in determining training efficacy.
The recovery of hand function in chronic stroke survivors is challenging because of finger complexity and post-stroke spasticity. This study developed iPARKO-2, a novel device that simulates the manual finger extensor facilitation technique while overcoming the limitations of the original device. iPARKO-2 enables the simultaneous fixation of the index through the little fingers and applies resistance from the proximal phalanges, allowing training in patients with strong fingertip spasticity. This study is a pilot study aimed at technical validation and feasibility. Five participants underwent training at three distinct target-pushing force levels. Concurrently, their active range of motion and extensor muscle activity were measured. The results show a direct correlation between the increased pushing force and the improvement in total active motion. Furthermore, the level of muscle activity exhibited a positive correlation with the extent of the observed improvement. iPARKO-2 also reduced the fixation time and enhanced usability. These findings suggest that iPARKO-2 effectively enhances voluntary hand movements and that pushing force is a key factor in determining training efficacy.utf-8