Latest News More News

Recent Articles More Articles

Open Access

Article

05 December 2025

Long-Term Creep Performance of Ferritic SOC Interconnect Steel

Crofer® 22 H is a well-known commercial ferritic stainless steel for the construction of SOC interconnect plates. Its performance under creep loading conditions in the temperature range from 700 to 800 °C was evaluated against a pre-commercial trial steel to signify the impact of thermomechanical treatment history on long-term creep response. While the commercial grade prevailed in solution treated, i.e., low dislocation density, state, the trial steel was put into creep service in a deformed, i.e., high dislocation density, condition. Dislocations do play a major role in the early stages of the nucleation of strengthening Laves phase precipitates, and for this reason, sensitively impact the creep response of the materials in the primary stage of creep, which even affects the following (limited) secondary stage and especially the transition into the creep life dominating tertiary creep stage.

High-Temp. Mat.
2025,
2
(4), 10023; 
Open Access

Article

05 December 2025

Stopping Rules for Two-Sigma Structural Monophyly in Morphology-Based High-Resolution Phylogenetics

Stopping rules for sampling designs are critical for limiting the effort needed to obtain adequate or significant data, and in many cases for conservation of the species sampled. Such rules are commonly based on pre-determined criteria or a lack of new information as sampling continues. Structural monophyly analysis of minimally monophyletic groups of one ancestral species and a few immediate ancestral species uses a series of steps, each step with a statistical evaluation that helps produce a concise model. Demonstration of two-sigma exclusion of uncertainty is a new stopping rule requirement. The full series of analytic steps has not previously been consolidated in one publication.

Ecol. Divers.
2025,
2
(4), 10013; 
Open Access

Article

04 December 2025

Stakeholder Mental Models for Sustainable Management of the Invasive Pearl Oyster Pinctada radiata in the Eastern Mediterranean

Sustainable management of marine and coastal systems depends not only on ecological dynamics but also on the ways stakeholders perceive and interpret them. This study investigates how fishers, scientists, and government officials understand and frame the management of the Indo-Pacific pearl oyster Pinctada radiata, a non-native yet economically valuable species established around Evia Island, Greece. Using a mixed-methods approach (N = 80), we combined an eleven-item Hydro-ecological Governance Perception Scale (HGPS) with open-ended responses to explore cognitive patterns and governance perspectives. Sampling adequacy was satisfactory (KMO = 0.74; Bartlett’s χ2(55) = 350.41, p < 0.001) and factor analysis revealed two interrelated dimensions explaining 67.8% of total variance (α = 0.84; ω = 0.86; CR = 0.82). Although Kruskal–Wallis tests showed no statistically significant differences among groups (p > 0.05), hierarchical clustering distinguished three partially overlapping cognitive profiles: Ecological Pragmatists, Institutional Collaborators, and Adaptive Stewards (Silhouette = 0.45; CH = 150.23; DBI = 0.75). Thematic and sentiment analyses underscored the importance of collaboration, transparency, and education (mean sentiment = 0.58). The findings demonstrate how cognitive diversity can improve hydro-ecological resilience and the sustainability of coastal governance when it is mobilized through co-management and participatory monitoring.

Open Access

Article

02 December 2025

The Role of Electric Vehicles in Environmental Transformation-Goal Towards a Pollution-Free Climate

Government agencies have worked tirelessly to minimize the effects of pollution. This problem is pretty dominant in developing countries like Pakistan. The world is facing a severe problem in the form of pollution and the greenhouse effect in recent years. At present, cities like Karachi and Lahore are facing a very high index of Air pollution caused by vehicular emissions. In this framework, the current research proposes an optimized design of student electric vehicles to attenuate environmental pollution. Electric vehicles produce zero tailpipe emissions, which means no toxic gases. A Carbon Footprint Analysis is conducted in the proposed study to measure the effect of greenhouse gases over the various phases of a vehicle’s life. To simulate the long-term impacts of electric vehicles on the environment, Agent-based Modelling is performed. It mainly includes the analysis of technological advancements in battery recycling. The idea of the student electric vehicle is based on several key points, including the use of an AGS (Automatic Gear System) and Self-Driving mode, to make it easier for students to navigate. Further, a sensing mechanism is developed for predictive maintenance and diagnostics. Hence, the proposed idea of student electric vehicles may be a game-changer for the students by providing them with a safe and pollution-free environment. The analysis shows that EVs like those proposed by students will reduce life cycle emissions by upto 71 percent as compared to ICE.

Open Access

Article

01 December 2025

Preparation, Characterization and Performance Assessment of Metal Complexes of Curcuma longa Extract as Sensitizers for Dye-Sensitized Solar Cells

The dye extract of Curcuma longa (turmeric), which is very rich in curcumin, was chemically modified by complexation reaction with Zn2+, Cu2+, and Fe3+ ions to enhance its stability, electron transfer and photovoltaic performance. The dye and complexes were characterized by Ultraviolet-Visible (UV-Vis) absorption and Fourier Transform Infra-Red (FTIR) spectroscopy of potential chromophores and functional groups. The spectral data obtained indicated that the curcuminoid ligands were successfully coordinated with the metal centers, resulting in red-shifted absorption bands from beyond 460 nm and C=O vibrational frequency decreasing below 1650 cm−1. Complexation reaction resulted in improved photochemical response and enhanced light-harvesting potential. When compared, the solar cells fabricated with titanium dioxide (TiO2) photoanodes sensitized by the complexes afforded improvement in the magnitude of short-circuit current density as well as power conversion efficiency compared to the devices sensitized with the crude extract. Among the three complexes, the Zn-complex afforded the highest efficiency (1.20%), attributed to favourable electronic coupling and reduced recombination losses. Computational studies conducted through quantum chemical calculations based on the curcumin structure supported the experimental findings. The findings from this study demonstrate that metal ions-natural dye complexes have potential for application as low-cost, eco-friendly and sustainable sensitizers, thereby opening a novel horizon in green photovoltaic technologies.

TOP