Fibrosis, characterised by the excessive deposition of extracellular matrix via activated fibroblasts, is a pathological feature of several chronic inflammatory disorders, which collectively contribute significantly to global morbidity and mortality. Despite this, current anti-fibrotic therapies are of limited efficacy. However, incretin-based therapies, primarily glucagon-like peptide-1 (GLP-1) receptor agonists, are now emerging as candidate drugs for modulating fibrotic signalling pathways. This review synthesises the growing body of preclinical and clinical evidence that incretin receptor agonists exert direct and indirect anti-fibrotic effects. We detail the molecular mechanisms and survey the promising data across hepatic, cardiac, renal, lung, and joint tissues, which underscore the potential for repurposing of this drug class as a therapeutic strategy for fibro-inflammatory conditions.
Chromate-based corrosion protection, such as that on aluminum (Al), magnesium (Mg), titanium (Ti), and other alloys, has often been used with some success. Considering the pollution problem associated with chrome, it is necessary to search for an alternative process to conventional chromate coating technology. Plasma electrolytic oxidation processing (PEO) is an emerging, environmentally friendly surface engineering technique. The study in this article was to utilize the PEO technology to deposit aluminate coatings on magnesium alloy AE44 for corrosion protection. Potentiodynamic polarization measurements and electrochemical impedance tests were performed to investigate corrosion behaviors of coated and uncoated AE44 alloy samples immersed in 3.5 wt% NaCl solution. The surfaces of coated and uncoated samples before and after corrosion tests were observed by scanning electron microscopy (SEM). SEM and energy dispersive spectroscopy (EDS) and X-ray diffractometry (XRD) were used to study the effect of PEO coatings on the surface morphology change of the alloy in association to their corrosion behaviors. The differences in corrosion behaviors under different electrical parameters of aluminate-based coatings on Mg alloy AE44 were elucidated through potentiodynamic polarization measurements, complemented by SEM and EDS analysis.
The conventional way of reducing the gloss of coating is to use matting agents such as silica, wax, and fillers. The demerits of these matting agents are sedimentation, poor compatibility, and deterioration of mechanical properties over time. Recent advances in organically modified matting agents and self-matting polymers have addressed these limitations by enabling uniform matte finishes without compromising film integrity. Organically modified silica, functionalized with silane or acrylate moieties, has been shown to deliver lower gloss values in the range of 5–14 gloss units at 60°, in contrast to the typically observed >70 gloss units for conventional high-gloss coatings. Similarly, self-matting polymers, particularly waterborne polyurethane (WBPU) and acrylate dispersions, achieve matte effects through intrinsic micro-roughness during film formation. The gloss value achieved with self-matting acrylic resin synthesized using hydrolyzable silane functionality is 6.3 units at 60°. This review emphasizes distinct techniques for organic modifications of matting agents, synthetic approaches for self-matting polymeric architectures, and their applications in the fields of decorative coatings, industrial coatings, and wood coatings.
With the rapid expansion of synthetic gene technologies and engineered bacteria for disease diagnosis or therapy, biosafety concerns have intensified. Substantial efforts have therefore been directed toward developing biocontainment systems that prevent the unintended release of engineered microorganisms and the horizontal transfer of synthetic genetic elements into natural ecosystems. Recent advances in synthetic biology have yielded a diverse suite of biocontainment strategies, including engineered biosafety genetic circuits, genetic isolation approaches, targeted degradation of genetic material, and physical encapsulation of microbial chassis. Furthermore, the incorporation of unnatural nucleic acids and noncanonical amino acid-based orthogonal replication, transcription, and translation systems has markedly improved the robustness and orthogonality of these containment platforms. In this review, we summarize the latest developments in biocontainment strategies for genetically engineered bacteria and discuss how these innovations may address current and emerging biosafety challenges.
Driven by global energy transition goals, the large-scale development of offshore wind power imposes rigid requirements for professionalism, standardization, and timeliness on feasibility study reports (FSR). Traditional manual compilation and existing automated methods fail to meet these requirements due to interdisciplinary complexity, poor process controllability, and insufficient domain adaptation. To address these challenges, this paper proposes a configurable and interpretable offshore wind FSR generation system built on a three-tier framework that encompasses “data support, process orchestration, and quality assurance”. The system integrates a YAML-based workflow architecture, multi-level prompt engineering, and a comprehensive evaluation system. Notably, the introduced “Cyclic Aggregation Mode” enables the iterative generation and logical summarization of multi-subproject data, effectively distinguishing this system from traditional linear text generation models. Experimental results demonstrate that the proposed “Retrieval-Augmented Generation (RAG) + Large-scale Language Model (LLM) + Workflow” system outperforms baseline models with key metrics including semantic consistency (0.6592), information coverage (0.3908), structural compliance (0.5123), and an overall score (0.5965). Ablation studies validate the independent contributions of the RAG and Workflow components, thereby establishing the “RAG + LLM + Workflow” paradigm for intelligent professional document generation. This work addresses core challenges related to controllability, accuracy, and interpretability in high-stakes decision-making scenarios while providing a reusable technical pathway for the automated feasibility demonstration of offshore wind power projects.