In this paper, the effect of filler metal and type of welding on the strength and ductility of dissimilar welding of two different grades of stainless steel was investigated. One of the benefits of stainless steel is its corrosion resistance, which is often necessary for equipment longevity in these facilities. During shipbuilding, as required, stainless steel 316L needs to be welded to the shipbuilding-grade carbon steel A131. In these applications, welding between the two should demonstrate superior strength during vessel construction. To provide a clear illustration, experimental work was needed to allow a careful selection of the joining procedure and filler metal or electrode. The current research work includes a comparative experimental analysis of dissimilar-metal welding (SS-316L & A131 steel). The reasons for choosing these two materials are their greater corrosion resistance and high strength in humid environments. Furthermore, two different welding methods (SMAW & TIG) with varying filler metals were employed in the experiment. The ultimate tensile strength and yield strength of the SMAW welds using E308-16 filler metal were the highest among all, while the TIG welds with ER308L showed superior bending strength. Observations suggest that SMAW with the E308-16 electrode exhibits superior tensile strength, while TIG joints with ER 308L filler provide better bending strength for the welding of SS-316L and shipbuilding (SB) grade A131 steels.
Steel is an essential component used to build marine vessels due to its endurance of the sea’s harsh conditions, including corrosion and dynamic stresses, therefore, different grades of mild steel are used in shipbuilding. It provides the strength, ductility, and weldability necessary for structural integrity, consisting of carbon, manganese, etc., as alloying elements. In this research, different quenching media were employed to assess variations in mechanical properties. This process ultimately triggered alterations in the microstructure of the steel. Two types of media, such as vegetable oil (Canola) and Polyvinylpyrrolidone polymer (PVP), were studied in comparison with simple heat-treated steel. Mechanical characterization comprised of tensile testing, hardness and impact testing to evaluate major changes in strength and ductility. Furthermore, a microscope was used to interpret the microstructure. To guarantee consistency in testing, samples were prepared in accordance with ASTM guidelines. The yield strength of as-received steel was increased from 298 MPa to 358 MPa and 370 MPa because of rapid cooling action in PVP and oil, respectively. A significant increase in Ultimate tensile strength was achieved due to the variety of quenching media; however, ductility was seriously compromised because of the excessive hardness of the material. Impact energy analysis revealed a notable reduction, which is linked with degradation in toughness.
The integration of robotics into service environments is transforming how labor-intensive tasks are managed, particularly during peak hours with staff shortages and long wait times. This research presents a fully autonomous, modular food-delivery robot designed to enhance operational efficiency and improve service experience. The system combines artificial intelligence, facial recognition, smartphone-based order management, Arduino, ESP32, ESP32-CAM, and Python to navigate indoor environments and deliver food directly to recipients, supported by a secure handover mechanism. Experimental results indicate that the robot performs waiter-like delivery reliably, maintaining mobility and structural integrity across various surfaces by using lightweight materials and motors that have been optimized. Through the use of a motion coordination algorithm, responsive navigation can be achieved, while a simple user interface can be operated by anyone with minimal training. According to these results, automation reduces the need for manual labor, increases the speed of service, and ensures consistency in the delivery process. Additionally, the system provides a practical framework for future research and potential applications beyond food delivery, such as surveillance, environmental monitoring, and disaster response. Future work will focus on scaling for real-world deployment and integration advanced AI navigation to enhance autonomy, adaptability, and overall operational performance.
This study examines how efficiency improvements associated with Jevons’ Paradox and product-system maturation, as described by Vernon’s Product Life Cycle (PLC), jointly influence the long-term pricing relationship between primary and recycled copper and aluminium. Using author-provided nominal annual USD price series for 2002–2021, the analysis derives descriptive indicators most notably the recycled-to-primary (R/P) price ratio to characterize structural shifts consistent with PLC-driven secondary integration. Recent market conditions in 2024–2025, including tight physical availability, low inventories, regional premia, and recurrent episodes of backwardation, are incorporated as qualitative context without merging with the historical dataset. Results indicate a sustained narrowing of R/P discounts for both metals by 2021. The combined Jevons–PLC interpretation suggests that efficiency-driven service expansion and supply-side tightness increase the relative value of secondary material, supporting long-term convergence between primary and recycled streams.