Issue 4, Volume 3 – 2 articles

Open Access

Review

04 November 2025

Tools and Strategies for Engineering Bacillus methanolicus: A Versatile Thermophilic Platform for Sustainable Bioproduction from Methanol and Alternative Feedstocks

Bacillus methanolicus MGA3 is a methylotrophic bacterium with a high potential as a production host in the bioeconomy, particularly with methanol as a feedstock. This review presents the recent acceleration in strain engineering technologies through advances in transformation efficiency, the development of CRISPR/Cas9-based genome editing, and the application of genome-scale models (GSMs) for strain design. The generation of novel genetic tools broadens the biotechnological potential of this thermophilic methylotroph. B. methanolicus is a facultative methylotroph and apart from methanol it can grow on mannitol, arabitol and glucose, and was engineered for starch and xylose utilisation. Here, the central carbon metabolism of B. methanolicus for various native and non-native carbon sources is described, with an emphasis on methanol metabolism. With its expanding product portfolio, B. methanolicus demonstrates its potential as a microbial cell factory for the production of tricarboxylic acid(TCA) cycle and ribulose monophosphate (RuMP) cycle intermediates and their derivatives. Beyond small chemicals, B. methanolicus is both a valuable source of novel thermostable proteins and a host for the production of heterologous proteins, enabled by advances in genetic tools and cultivation methods. Continued progress in understanding its physiology and refining its genetic toolbox will be decisive in transforming B. methanolicus from a promising candidate into a fully established industrial workhorse for sustainable methanol-based biomanufacturing.

Open Access

Review

17 November 2025

Enzyme-Mediated Carbon Dioxide Fixation: Catalytic Mechanisms and Computational Insights

Carbon conversion technologies that transform carbon dioxide (CO2) into high-value chemicals are pivotal for achieving sustainability. Among these, enzyme-mediated CO2 fixation has recently gained increasing attention as a more sustainable and environmentally friendly alternative to traditional chemical methods, which typically require harsh conditions and impose significant environmental costs. Recent advances in computer-aided techniques have greatly facilitated the mechanistic understanding of CO2-fixing enzymes and accelerated the development of enzyme-catalyzed carboxylation strategies. This review highlights recent progress in enzyme-mediated CO2 fixation by categorizing key enzymes into four classes based on their cofactor or metal ion requirements: cofactor-independent enzymes, metal-dependent enzymes, nicotinamide adenine dinucleotide phosphate (NAD(P)H)-dependent enzymes, and prenylated flavin mononucleotide (prFMN)-dependent enzymes. We outline the basic principles and applications of molecular dynamics (MD) simulations and quantum mechanical (QM) calculations, which serve as essential tools for investigating enzyme conformational dynamics and reaction mechanisms. Through representative case studies, we demonstrate how computational analyses uncover catalytic features that enhance CO2 conversion efficiency. These insights underscore the critical role of computer-aided approaches in guiding the rational design and optimization of biocatalysts, thereby advancing the application of enzyme-based systems for CO2 fixation.

Synth. Biol. Eng.
2025,
3
(4), 10017; 
TOP