Sort by

Artiles

Article

27 September 2024

Strategic Deployment of Service Vessels for Improved Offshore Wind Farm Maintenance and Availability

This research explores the optimization of Operations and Maintenance (O&M) strategies for offshore wind farms using a sophisticated O&M simulator built on the Markov Chain Monte Carlo method. By integrating real-world constraints such as vessel availability and weather conditions, the study assesses O&M logistics’ impacts on wind farm availability, energy production, and overall costs across different scenarios in the Celtic Sea. Through comparative analysis of eight case studies involving various combinations of Crew Transfer Vessels (CTV) and Service Operation Vessels (SOV), the research highlights the critical role of strategic vessel deployment and the potential of permanent SOV stationing to enhance operational efficiency, reduce downtime, and lower O&M costs. In this study, the permanent SOV can increase up to 20% availability of the whole wind farm. The findings underscore the importance of adaptive O&M planning in improving the sustainability and financial viability of offshore wind energy projects.

Keywords: Operations and Maintenance; Offshore wind farm; O&M logistics; Crew Transfer Vessels; Service Operation Vessels

Article

26 September 2024

Distribution Patterns of Tigers and Leopards in Thung Yai Naresuan (East) Wildlife Sanctuary, Western Thailand

Examining the distribution patterns of sympatric large carnivores provides critical insights into the roles of prey availability and human disturbances in shaping the landscape use of these key predators. The Thung Yai Naresuan (East) Wildlife sanctuary (TYNE) in western Thailand has been presumed to be a natural stronghold for tigers (Panthera tigris), leopards (Panthera pardus), and large ungulates, but little was known about their habitat relationships there. During April 2010February 2012, camera trap surveys (n = 106 camera trap locations; n = 1817 trap nights) and sign surveys (n = 493 km of transects) were designed to systematically cover overlapping areas of 925 km2 and 1421 km2, respectively, to characterize and evaluate tiger and leopard distribution in TYNE. Occupancy modeling was used to estimate the potential environmental and anthropogenic factors that best explained habitats used by these large carnivores. The predictive model of tiger and leopard occupancy from surveys at the same sampling scale revealed similar relationships between limiting factors and space use. Camera surveys show that tigers are more likely than leopards to inhabit areas where gaur (Bos gaurus) and sambar (Cervus unicolor) are frequently found.. Sign surveys from across TYNE also indicated tiger distribution was characterized by the presence of large ungulates, as well by areas with high ranger patrol effort; leopard distribution was characterized by a higher occurrence of smaller barking deer (Muntiacus vaginalis) and wild boar (Sus scrofa), and by areas with low human disturbance. Our findings suggest that tigers and leopards have specific habitat preferences within the TYNE, with tigers showing a preference for areas with larger ungulates. In contrast, leopards are more likely to be found in areas with smaller prey. Human settlement areas and disturbance activities were identified as key factors influencing the distribution of both species, limiting their range to the central to the eastern part of the sanctuary.

Keywords: Spatial ecology; Camera trap; Prey availability; Human disturbance; Conservation priorities; Predator-prey dynamics; Ecological modeling

Article

25 September 2024

Evolution in the Dinarids: Phylogeography, Diversity and Evolutionary History of the Endemic Genus Delminichthys (Actinopteri; Leuciscidae)

The origin of exceptionally rich fish communities harboured within the freshwater systems of southern Europe is usually explained by allopatric speciation due to a long isolation of water basins. On the other hand, hybridization events have been recorded in several fish species, but they role in the speciation of freshwater fishes in the Southern Europe has not received significant attention. Contrary to most species within the Leuciscidae family, the genus Delminichthys inhabits a geographically restricted area (middle and southern Dinarides) and consists of only four endemic species. This study analysed the population genetic structure and demographic history of each Delminichthys species as a contribution to the understanding of the evolutionary peculiarities in Dinaric water systems. The obtained results revealed pronounced mito-nuclear and nuclear-nuclear discordance, likely the result of incomplete lineage sorting, as well as nuclear introgression observed in the Ombla River population in southernmost Croatia. In addition to allopatric speciation, ancient hybridization might have played an important role in the evolutionary history of this genus. The origin of the genus Delminichthys can be dated back to the Oligocene/Miocene boundary, to a period of significant tectonic activity in the Mediterranean region, and its ancestor likely inhabited the region of the central Dinarides. Intrageneric divergences occurred in the lower Miocene and Pliocene. Similarly, as previously proposed for Delminichthys adspersus, traces of underground migrations were found among Delminichthys ghetaldii populations, implying adaptations to underground life to be characteristic for the genus. All Delminichthys species express high levels of genetic diversity, likely as a consequence of their old origin. Size of D. adspersus is currently decreasing, while the remaining three species appear stable.

Keywords: Dinaric freshwater systems; Evolutionary history; Genetic composition; Genus Delminichthys; Nuclear introgression; Underground migration

Review

23 September 2024

Icing Models and Mitigation Methods for Offshore Wind in Cold Climate Regions: A Review

Offshore wind turbines (OWTs) in cold climate regions have become increasingly significant due to the abundant wind resources with the development of renewable energy. These areas offer considerable potential for the development of OWTs. Generating energy for communities in cold climate regions involves overcoming significant challenges posed by the remote and harsh environmental conditions. This review presents the state-of-the-art research regarding prediction models for ice accretion on wind turbine components. Furthermore, this review summarizes advanced mitigation solutions, such as cold-weather packages and ice protection systems, designed to address icing issues. The present study identifies critical knowledge gaps in OWT deployment in cold climate regions and proposes future research directions.

Keywords: Offshore wind turbine; Cold climate region; Ice accretion; Ice mitigation

Commentary

20 September 2024

Sustainable Design and Integrity Control of Onboard Health Tools for Humans and Their Environmental Urban Biodiversity

Recently, onboard sensing and support devices have been used for the well-being of humans, animals, birds, plants and, more generally, biodiversity. The performance of these tools is closely linked to their electromagnetic environment, mainly artificially created by humans. Therefore, the presence of electromagnetic radiation linked to human activities near such tools constitutes a threat. The intelligent and sustainable manufacturing of these tools, which makes it possible to face such a threat, can be achieved through their design and optimization. This commentary aims to highlight the interaction of artificial electromagnetic radiation with onboard health tools involving living tissues in urban biodiversity (One Health concept) and the intelligent and sustainable construction and protection (Responsible Attitude concept) of these tools. The manuscript presents an overview of onboard devices, possible effects of electromagnetic radiation, durable construction and shielding, and analysis of electromagnetic compatibility integrity control. The main outcome of this contribution regarding sustainably designed onboard devices is that numerical analysis tools of electromagnetic fields could efficiently verify their integrity and the behavior of their necessary smart shields. These different themes are associated with examples of literature.

Keywords: Onboard devices; Electromagnetic perturbation; Sustainable design; Biodiversity; Integrity control

Research Highlight

19 September 2024

Commentary

18 September 2024

Primed Lung−Vagus−Brainstem Circuit by Allergen Triggers Airway Hyperactivity

The nucleus of the solitary tract (NTS) is the primary hub for sensing and integrating respiratory information. It integrates input from the vagus and glossopharyngeal nerve. It interacts with other brainstem nuclei, such as the nucleus ambiguus (NA) and the dorsal motor nucleus of the vagus (DMV), to transmit information and initiate a neuroreflex response to respiratory stimuli. In a recent issue of the journal Nature, Su et al. demonstrated that Dbh+ neurons in the NTS can receive signals from vagal Trpv1+ sensory neurons that sense allergen−induced IL−4 production in mast cells and pass the signal to Chat+ neurons in the NA by releasing norepinephrine. Subsequently, NA Chat+ neurons drive allergen−induced airway hyperresponsiveness by projecting onto cholinergic pulmonary ganglia in the lungs. This study not only provides new insights into the regulation of allergen−induced airway hyperresponsiveness by lung−vagusbrainstem interoceptive circuit but also provides us with new strategies to combat asthma.

Keywords: Vagus nerve; Brainstem; The nucleus of the solitary tract (NTS); The nucleus ambiguus (NA); Interoceptive circuit; Allergen; Asthma

Article

18 September 2024

Direct-Ink-Writing Printing of Shape Memory Cross-Linked Networks from Biomass-Derived Small Molecules

The rapid development of 3D printing, also known as additive manufacturing, has opened up new opportunities for applying shape memory polymers (SMPs) in various fields. The use of abundant, inexpensive, and easily accessible biomass materials as printing raw materials not only facilitates the creation of more intricate SMPs but also aligns with the principles of low-carbon, green, and sustainable development. Here, we successfully printed a shape memory cross-linked network (NW-MO-TTMP) in a single step by direct-ink-writing printing and an in-situ thiol-ene click reaction with magnolol and trimethylolpropane tris(3-mercaptopropionate) as raw materials. The resulting NW-MO-TTMP network exhibited high mechanical properties and a tensile strength (σ) of up to 2.7 MPa when the thiol-ene ratio was 1.0:1, and the photo-initiator content was 1.5%. To improve printability, ethyl cellulose (EC) derived from biomass was incorporated to enhance the viscosity of the printing precursor fluid, resulting in a significant increase in the σ of the NW-MO-TTMP/EC network, reaching 20.6 MPa. Moreover, the successful printing of intricate models, such as the ‘whale’ and ‘octopus,’ demonstrated excellent shape memory effects. This approach highlights the potential of combining biomass-derived materials with advanced 3D printing techniques to develop sustainable and high-performance SMPs.

Keywords: Direct-ink-writing printing; Shape memory; Thiol-ene click reaction; Biobased materials

Review

14 September 2024

Emerging Technologies in Forensic DNA Analysis

Forensic DNA analysis has fundamentally transformed criminal investigations, providing an unprecedented level of accuracy in identifying suspects, exonerating the innocent, and solving cold cases. This manuscript reviews the emerging technologies that are reshaping the field of forensic DNA analysis, including next-generation sequencing (NGS), rapid DNA analysis, AI-driven forensic workflows, 3D genomics, and mobile DNA platforms. These innovations enhance the speed, precision, and scope of DNA analysis, allowing forensic scientists to process evidence more efficiently, analyze more complex samples, and conduct real-time field-based investigations. While these advancements hold great promise, they also introduce significant challenges, such as ensuring data security, maintaining the integrity of evidence, and navigating the ethical and legal implications of new forensic technologies. Issues related to privacy, consent, and potential bias in DNA databases are becoming increasingly complex as these systems expand. Furthermore, the legal admissibility of cutting-edge technologies like AI-driven DNA analysis and phenotypic prediction must be carefully evaluated to ensure the rigorous standards of forensic evidence in court are met.This review explores the opportunities and challenges associated with these emerging technologies, emphasizing the importance of responsible and ethical use. By examining advances in DNA extraction, spatial DNA analysis, and the integration of AI in forensic workflows, this manuscript provides forensic professionals with a roadmap for navigating the evolving landscape of forensic DNA analysis. The future of forensic DNA analysis lies in balancing technological innovation with the commitment to justice, ensuring that DNA evidence remains a reliable and indispensable tool in pursuing a more equitable legal system.

Keywords: Forensic DNA analysis; Next-Generation Sequencing (NGS); AI in forensics; Rapid DNA analysis; 3D genomics; Mobile DNA platforms; Forensic databases; Ethical issues in DNA analysis; Phenotypic prediction; Spatial DNA analysis; Criminal investigations; Genetic privacy; DNA contamination; Emerging forensic Technologies; Legal considerations in forensics

Editorial

13 September 2024

Hypoxic Ventilatory Response in Highlander and Lowlander Chinese Patients with Sleep Apnea

Purpose: The aim of the study was to compare Hypoxic Ventilatory Response (HVR) of sleep apnea in Uygur patients stemming from higher altitude and Chinese Han patients from sea level. Patients and Methods: 276 subjects with or without snoring from the Karamay community were recruited. 226 subjects (n = 71 Han OSA patients, n = 75 Uygur OSA patients, n = 52 for Uygur control subjects without OSA, n = 28 Han control subjects without OSA) were matched for age and gender. All patients were assessed via polysomnography (PSG). Lung function was assessed. Apnea-hypopnea index (AHI), mean SaO2 (MSaO2%), lowest SaO2 (LSaO2%), the number of desaturations ≥4% per hour (ODI4), FEV1/FVC ratio, HVR, △VE/△SaO2 and the pulse responses to hypoxia changes (ΔPulse/ΔSaO2) were calculated. A multiple logistic regression using a binary outcome for HVR was applied. Results: (1) In control subjects without OSA, those living at high altitude (Uygur) had a lower HVR than control subjects living at sea level (Han) [−0.35L·min−1 per %SpO2(−0.49 to−0.20 L·min−1 per %SpO2) vs.−0.44 L·min−1 per %SpO2(−0.55 to −0.21 L·min−1 per %SpO2)]. (2) Compared to patients with OSA living at sea level (Han), those OSA patients living at high altitude (Uygur) had a higher neck circumference [43 cm (range 3945 cm) vs. 42 cm (4146) cm], higher abdominal circumference [110 cm (102120 cm) vs. 101 cm (98111 cm], higher LSaO2 [81% (7285%) vs. 76% (6881%)], lower AHI [26 events/h (1643 events/h) vs. 36 events/h (2462 events/h)] and lower ODI4 [15/h (729/h) vs. 37/h (2054/h)]. (3) Considering patients with mild OSA, those who lived at high altitude (Uygur) had a weaker HVR compared to Han patients [−0.31 L·min−1 per %SpO2(−0.42 to −0.20 L·min−1 per %SpO2) vs.−0.47 L·min−1 per %SpO2(−0.59 to −0.21 L·min−1 per %SpO2)]. However, in moderate and severe OSA the difference in HVR between people living at high and low altitudes was not significant. Conclusion: In people living at high altitude (Uygur) compared to sea level (Han), HVR is weaker both in control subjects and those with mild OSA, but this difference between populations living at different altitudes in those with moderate and severe OSA is not obvious.

Keywords: Hypoxic ventilatory response (HVR); Obstructive sleep apnea (OSA); Polysomnography (PSG); Apnea-hypopnea index (AHI); Hypoxic pulse response (HPR)
TOP