Sort by

Found 611 results

Open Access

Review

07 August 2025

Progress in the Study of Transition Metal-Based Carbon Nanotube Composites for Electrochemical Hydrogen Evolution

Hydrogen is an efficient, clean, and economical energy source, primarily due to its remarkably high energy density. Electrolytic water is considered an attractive and feasible method for hydrogen production. The high cost and scarcity of traditional Pt-based catalysts limit their large-scale application. Transition metals (TMs)-based composites, particularly those integrated with carbon nanotubes (CNTs), have emerged as promising alternatives due to their high conductivity, surface area, and ability to enhance the catalytic properties of TMs. Currently, there is no systematic summary of TMs-based CNTs composites for electrochemical hydrogen evolution reaction (HER). In this review, the main synthesis methods, including the wet chemical method, chemical vapor deposition, and electrochemical techniques, were first summarized. Then, the latest advancements of TMs/CNTs composites, focusing on their structure, electronic properties and superior HER catalytic performance, were systematically discussed. The catalytic mechanisms are meticulously examined, with particular emphasis on the pivotal role of CNTs in enhancing charge transfer and stabilizing metal nanoparticles. Finally, this review addresses the current challenges and future development directions for HER catalysts.

Keywords: Carbon nanotubes; Transition metals; Composites; Hydrogen evolution reaction
Green Chem. Technol.
2025,
2
(3), 10012; 
Open Access

Communication

05 August 2025

Autoimmune Adverse Events Following Immunization

Adverse events (AEs) following immunization can include autoimmune AEs for some vaccines and combinations. This study retrospectively examines autoimmune AEs to detect safety signals for vaccines and concomitantly administered vaccines in the Vaccine Adverse Event Reporting System (VAERS) database. This study focuses on which vaccines were administered or coadministered for retrospective analysis of analyzed autoimmune AEs. Observed results include multiple autoimmune AE safety signals: human papillomavirus (HPV) Cervarix, HPV Gardasil, hepatitis (Hep) A + Hep B (Twinrix), Lyme disease (LYMErix), coadministered COVID-19 Moderna + Pfizer-BioNTech, Hep B (Engerix-B), and others. Identified arthritis AE safety signals include Lyme disease (LYMErix), rubella (Meruvax II), HPV (Cervarix), Anthrax (Biothrax) + Smallpox (Dryvax), and more. Coadministered DTaP + HepB + IPV (Pediarix) + Hib (Pedvaxhib) + Pneumococcal (Prevnar13) + Rotavirus (Rotarix) may be exhibiting synergy AE rate for eczema AEs. Thirty five influenza vaccines were observed with Guillain–Barré syndrome (GBS) AE safety signals, plus additional safety signals for multiple other vaccines. influenza (H1N1 monovalent) (GSK) exhibits a very high rate for narcolepsy AEs.

Keywords: Autoimmune; Adverse events; Arthritis; Complex regional pain syndrome; Guillain-Barré syndrome; Henoch Schonlein purpura; Postural orthostatic tachycardia syndrome; Systemic lupus erythematosus
Immune Discov.
2025,
1
(3), 10010; 
Open Access

Article

01 August 2025

Eastern Lubber Grasshopper Extract-Inspired Silver Nanoparticles Selectively Inhibit Methicillin-Resistant Staphylococcus aureus

Silver nanoparticles (AgNPs) were synthesized using a protein/polypeptide-rich aqueous extract from the Eastern lubber grasshopper (Romalea microptera), as a natural reducing and capping agent. The resulting AgNPs exhibited relatively uniform sizes (10–60 nm) and were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Ultraviolet-visible (UV-Vis) spectroscopy, Transmission electron microscopy (TEM), and Scanning Electron Microscopy (SEM). Disk diffusion tests against five bacterial strains (Methicillin-resistant Staphylococcus aureus (MRSA), Burkholderia cenocepacia, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli) demonstrated that the insect-extract-induced AgNPs selectively and significantly inhibited MRSA growth, with an average value of zone of inhibition of 9.16 ± 1.11 mm (n = 4). Statistical analysis confirmed the superior antibacterial activity of the Eastern lubber grasshopper-derived AgNPs against MRSA compared to citrate-capped AgNPs and free silver ions. These findings reveal the potential of insect-derived AgNPs as selective, green-synthesized antibacterial agents with enhanced efficacy and reduced side effects, particularly against antibiotic-resistant pathogens.

Keywords: Silver nanoparticle assembly; Eastern lubber grasshopper; Bio-inspired synthesis; Nano-biomaterials; Selective antibacterial activity
Open Access

Article

31 July 2025

Reversal of Remimazolam-Mediated Inhibition of Jurkat T Cell Activation by TGFBI Depletion

GABAA receptors are well-recognized targets for intravenous anesthetics and have been identified in T lymphocytes. Remimazolam, a GABAA receptor-binding agent, enhances the inhibitory effects of γ-aminobutyric acid (GABA) and provides a rapid onset and offset of sedation, making it suitable for procedural sedation and anesthesia. However, the impact of remimazolam on T cell function remains poorly understood. In this study, we used mass spectrometry analysis to confirm that Jurkat T cells produce and secrete GABA de novo. Consequently, treatment with remimazolam inhibited Jurkat T cell activation, even in the absence of exogenous GABA. Transcriptomic profiling of remimazolam-treated Jurkat T cells exhibited a significant upregulation of TGFBI expression. Furthermore, CRISPR/Cas9-mediated knockout of TGFBI reversed the inhibitory effects of remimazolam on Jurkat T cell activation. These findings highlight the profound influence of anesthetics on T cell activation and could be crucial for optimizing their clinical application.

Keywords: GABAA receptor; GABA; Remimazolam; T cell activation; TGFBI
Immune Discov.
2025,
1
(3), 10009; 
Open Access

Article

31 July 2025

Experimental Study on the Strength Distribution and Pore Distribution of Industrial Pellet and DRI

Against the backdrop of the “dual-carbon” goals driving the steel industry's transition toward hydrogen metallurgy, the hydrogen-based shaft furnace process has emerged as a focal point due to its low-carbon emissions. This study employs compression testing, mercury intrusion porosimeter, and industrial computed tomography  characterization to compare the mechanical properties and pore structures of industrial pellets and direct reduced iron (DRI). The results show that the compressive strength and mass specific breakage energy of DRI are lower than those of pellets, and the breakage characteristic parameters at the same particle size are lower, making it more prone to breakage; the compressive strength of both increases with the increase of particle size, the mass specific breakage energy decreases with the increase of particle size, and the strength growth rate of pellets is faster. In terms of pore structure, pellets are mainly composed of uniform macropores of 3428 nm with a porosity of 22.3%; DRI has a porosity of 48.8%, mainly composed of 3431 nm macropores and 831 nm micropores, with a low tortuosity index, which is conducive to gas diffusion. This study provides parameters and theoretical basis for modeling of burden movement and crushing in shaft furnace.

Keywords: Ironmaking; Pellet; DRI; Compressive strength; Breakage energy; Porosity
High-Temp. Mat.
2025,
2
(3), 10018; 
Open Access

Article

31 July 2025

Single Shift Segmentation Improves Moderate Flood Estimates under Nonstationary Conditions across the United States

Precipitation, particularly at high quantiles, has been reported to increase in various regions across the globe, raising pluvial flood risk. One of the main challenges in reliable flood frequency analysis is handling nonstationarity arising from climate variability or anthropogenic disturbances such as land use/cover change or river regulation. To separate these nonstationary footprints, we analyzed annual maximum peak flow records from 18 reference (minimally disturbed) and 66 non-reference stream gages, each with more than 100 years of flood records across the United States. Next, we used a nonparametric Pettitt test to identify statistically significant change points. When present, the flood record was split into pre- and post-change segments with a Log-Pearson III distribution fitted to each. Depending on the region and site type, using a segmented record improved the quantile estimate. At the majority of reference sites, post-change data produced the highest flood quantiles, reflecting recent climate-driven nonstationarity. Conversely, at several non-reference sites, pre-change data returned larger estimates, indicating that long-standing anthropogenic disturbances can attenuate the signal of climatic variations. Our study confirms that fitting a flood frequency model to the segment that minimizes nonstationarity, rather than the entire record, returns more reliable estimates for moderate flood magnitudes of up to a 25-year return interval. The approach highlights the need to understand the population from which flood records are extracted, to separate those populations where appropriate, and then fit a statistical distribution. This practical approach offers a simple thought process for updating moderate flood forecasts to guide infrastructure design or rehabilitation in the current dynamic environment, an era of constant change that needs flexibility in everything we design.

Keywords: Flood frequency analysis; Nonstationary; Petit change point detection; Log Pearson Type III (LP3); Reference versus non-reference basins; Anthropogenic disturbance; Climate variability; United States
Hydroecol. Eng.
2025,
2
(3), 10009; 
Open Access

Article

30 July 2025

Effects of Virtual Reality (VR) Rehabilitation on Mental Health in SCI Patients: A Randomized Controlled Trial

This randomized controlled trial investigates the effects of virtual reality (VR) rehabilitation on mental health in spinal cord injury (SCI) patients. Seventy-four participants were randomized to 12 weeks of VR-based or traditional rehabilitation, with mental health assessed via the Hospital Anxiety and Depression Scale (HADS) and World Health Organization Quality of Life-BREF (WHOQOL-BREF). The VR group showed significantly greater reductions in HADS scores at 6 weeks (mean change: −4.2 vs. −2.4, p < 0.001) and 12 weeks (mean change: −6.4 vs. −3.9, p < 0.001), with a large effect size (Cohen’s d = 1.21). VR also improved WHOQOL-BREF psychological health scores (+13.5 vs. +6.4, p < 0.001), self-esteem (+7.2 vs. +3.2, p < 0.001), and sleep quality (−5.1 vs. −2.8, p < 0.001). Subgroup analysis indicated greater benefits for younger patients and those with incomplete SCI. VR rehabilitation outperforms traditional methods in enhancing mental health, supporting its integration into comprehensive SCI care.

Keywords: Spinal cord injury; Virtual reality; Rehabilitation; Mental health; Randomized controlled trial
Lifespan Dev. Ment. Health
2025,
1
(3), 10012; 
Open Access

Article

29 July 2025

Air Conditioning Heat Exchanger Intelligent Production Line: Design Methodologies and Applications

As a key component in modern building environmental control systems, the production quality and performance of multi-split central air conditioning systems directly influence the comfort, energy efficiency, and operational stability of buildings. However, the current manufacturing process primarily relies on a combination of traditional manual labor and automated equipment, resulting in low efficiency, high energy consumption, and limited automation. This paper first presents an optimized design for an intelligent manufacturing production line for multi-split central air conditioning heat exchangers to address these issues. It details the design of key systems for the intelligent production line and ensures continuous production and processing. Additionally, the paper analyzes the production process of the intelligent manufacturing line, with particular emphasis on the mechanism of the heat exchanger tube expansion process. Furthermore, it designs the fixture structure of the transfer robot for each process in the production line and discusses the principles of workpiece positioning and clamping. Utilizing technologies such as sensor networks, PLC, and industrial Ethernet, the system completes the closed-loop process of perception, transmission, analysis, decision-making, and execution within the production line, enabling transparency, fault predictability, and automated management. The results show that the intelligent assembly production line has significantly improved the assembly efficiency, achieving a 300% increase in the daily production capacity of a single line. While enabling the continuous and intelligent production of multi-split central air conditioning heat exchangers.

Keywords: Central air conditioner; Heat exchanger; Production line; Process flow fixture; Intelligent control; Robot
Intell. Sustain. Manuf.
2025,
2
(2), 10024; 
Open Access

Commentary

29 July 2025
Open Access

Review

28 July 2025

Laser-Assisted Forming of Ultra-High Strength Steels: A Critical Review of Mechanisms, Processes, and Future Directions

Ultra-high strength steels (UHSS) are critical for lightweighting in the automotive and aerospace industries, but their poor room-temperature formability presents a significant manufacturing barrier. Laser-assisted forming (LAF) has emerged as a key enabling technology that utilizes localized laser heating to reduce forming forces, enhance ductility, and mitigate springback. This paper provides a critical review of the state-of-the-art in LAF of UHSS. It begins by elucidating the governing principles, including the coupled thermo-mechanical and metallurgical mechanisms such as thermal softening, dynamic microstructure evolution, and non-equilibrium phase transformations. The review then systematically surveys the major LAF process variants—including bending, roll forming, and incremental forming—and their applications in fabricating complex UHSS components. Despite its proven advantages, significant challenges impede its widespread industrial adoption. The most critical issues are identified and discussed, including local mechanical property degradation due to uncontrolled thermal cycles, the complexity of predictive multi-physics modeling, and the need for robust in-situ process monitoring and control. Ultimately, this review presents a forward-looking perspective, proposing future research directions that focus on microstructure management, the development of high-fidelity digital twins, and the implementation of intelligent closed-loop control systems to ensure process stability and part integrity. This work provides a comprehensive roadmap for advancing the science and technology of LAF for next-generation lightweight manufacturing.

Keywords: Laser-assisted forming; Ultra-high strength steel; Thermo mechanical coupling; Microstructure evolution; Process-structure-property relationship
High-Temp. Mat.
2025,
2
(3), 10017; 
TOP