Sort by

Found 313 results

Open Access

Article

14 May 2025

The Digital Generation: Branding and Consumer Behavior in Tech Adoption

This research investigates how different branding aspects influence Generation Z’s intention to purchase newly launched technological products designed for the agricultural sector. Given Gen Z’s strong digital engagement and preference for authenticity, sustainability, and innovation, branding plays a pivotal role in shaping their buying decisions. The study aims to assess the impact of key branding elements—such as brand experience, knowledge, image, trust, and loyalty—on the purchase intention of newly launched technological products with applications in agriculture management and informatics. As agricultural practices increasingly integrate smart farming technologies, data-driven decision-making, and precision agriculture, branding becomes crucial in ensuring the adoption of these innovations. Agricultural informatics—encompassing IoT-based monitoring systems, AI-driven analytics, and automated farm management solutions—relies on user trust and engagement for successful market penetration. Gen Z, a tech-savvy and socially conscious demographic, is particularly responsive to brands that emphasize efficiency, sustainability, and transparency in agricultural innovations. A quantitative research approach was adopted, utilizing a structured questionnaire administered to 302 Generation Z participants. Statistical analyses, including correlation and multiple regression, were conducted to examine the relationships between branding factors and purchasing behavior. The results indicate that online brand experience, brand knowledge, and brand image are the most significant predictors of purchase intention, highlighting the critical role of digital interactions, educational branding, and the perceived value of technology in optimizing agricultural processes. Although brand trust and loyalty influence consumer behavior, their impact is less significant than that of experience and knowledge. Although brand awareness and engagement correlate with purchase intention, they do not independently drive purchasing decisions. The study concludes that companies should prioritize enhancing digital brand experiences, providing transparent information, and reinforcing brand imagery to drive product adoption among Generation Z, particularly in the agricultural sector. As this generation continues to shape market trends, agricultural informatics, and smart farming technologies, businesses must craft branding strategies that align with Gen Z’s digital habits, values, and expectations. Future research should explore the long-term impact of branding on agricultural technology adoption and investigate the role of emerging technologies such as blockchain, AI, and big data in strengthening brand engagement and loyalty within the agricultural sector.

Keywords: Agriculture technological products; Gen Z; Consumer behaviour; Purchase intention; Newly launched technological products
Rural Reg. Dev.
2025,
3
(3), 10009; 
Open Access

Review

14 May 2025

Current Status of Biological Production Using C2 Feedstocks

C2 feedstocks have emerged as promising carbon sources for the biological production of various value-added chemicals. Compared to the traditional C6/C5 sugars-contained/constituted feedstocks, C2 feedstocks have diverse and abundant sources, including non-food biomass, industrial by-products, and C1 gases. This diversification not only eliminates competition with human food demands but also aligns with environmental sustainability goals. Moreover, the metabolic route for C2 compounds to enter central carbon metabolism is more direct, which minimizes the carbon loss and enhances the efficiency of bio-based production processes. This review extensively analyzes three prominent C2 chemicals: ethylene glycol, ethanol, and acetate. After introducing the sources of those compounds, it details the metabolic pathways through which they are converted into acetyl-CoA in vivo. Several chemicals produced from these C2 feedstocks in fermentation are also exemplified. Furthermore, different perspectives are proposed to promote the efficient utilization of C2 feedstocks.

Keywords: C2 feedstocks; Ethylene glycol; Ethanol; Acetate; Carbon source
Synth. Biol. Eng.
2025,
3
(2), 10007; 
Open Access

Article

12 May 2025

Drone Operation with Human Natural Movement

This study proposes a method for operating drones using natural human movements. The operator simply wears virtual reality (VR) goggles. An image from the drone camera was displayed on the goggles. When the operator changes the direction of his or her face, the drone changes the direction to match that of the operator. When the operator moves their head up or down, the drone rises or falls accordingly. When the operator walks in place, rather than walking, the drone moves forward. This allows the operator to control the drone as if they were walking in the air. Each of these movements was detected by the values of the acceleration and magnetic field sensors of the smartphone mounted on the VR goggles. A machine learning method was adopted to distinguish between walking and non-walking movements. Compared with operation via conventional remote control, it was observed that the remote controller performed better than the proposed approach in the early stages. However, when the participants familiarized themselves with the natural operation, these differences became relatively small. This study combined drones, VR, and machine learning. VR provides drone pilots with a sense of realism and immersion, whereas machine learning enables the use of natural movements.

Keywords: Drone; Virtual reality; Human computer interaction; Natural user interface; Machine learning; Support vector machine
Drones Veh. Auton.
2025,
2
(3), 10011; 
Open Access

Article

09 May 2025

Modeling and Assessing Economical Feasibilities for Waste to Energy Conversion/Incineration Process in Context of Municipal Solid Waste

At the time of the study, most of the municipal waste, including solid municipal waste, in the city of St. Petersburg and in the connected larger Leningrad region is processed by landfilling. This sort of waste processing in open landfills causes environmental damage, uncontrollable landfill fires, bad and dangerous odors, nearby rivers/streams, groundwater pollution, CH4 and CO2 emissions, to mention a few. Additionally, landfilling is a waste of energy and material resources present in the content dumped into landfills. In this context, Waste-to-Energy (WtE) incineration is a process that we use to recover the energy the materials have back to usable form, which we use in the form of heat and electricity. Even though a lot of resources and energy are available in the (municipal solid) waste, it does not mean that recovering it would always make sense. Our study analyses and estimates the profitability of a WtE incineration plant(s) in the city of St. Petersburg and the connected Leningrad region. With the available data and following analysis, we have concluded that the WtE incineration is economically feasible in this specific region and city areas, given that the implementations follow more traditional (economically less expensive and easier) technical and process model solutions. As a note of results stability, it needs to be pointed out that the changes in estimates of gate fees, cost of electricity and heat, and so on do impact the economic feasibility a lot, and larger scale changes in the assumed revenues would have a high impact on the outcome of repeatability of the results.

Keywords: Municipal solid waste; Waste to energy; Landfill; Feasibility analysis; Energy modeling; WtE assessment; Circularity; Waste reduction; Waste separation; Economical feasibility; Society 2.0; Sustainability
Intell. Sustain. Manuf.
2025,
2
(2), 10015; 
Open Access

Article

08 May 2025

Nonlinear Optimal and Multi-Loop Flatness-Based Control for the 6-DOF Autonomous Bicopter

Bicopter UAVs can find use in several civilian and defence applications. In the present article a solution of the nonlinear optimal control problem of 6-DOF bicopters is first attempted using a novel nonlinear optimal control method. This method is characterized by computational simplicity, clear implementation stages and proven global stability properties. At a first stage, approximate linearization is performed on the dynamic model of the 6-DOF bicopter with the use of first-order Taylor series expansion and through the computation of the system’s Jacobian matrices. This linearization process is carried out at each sampling instance, around a temporary operating point. At a second stage, an H-infinity stabilizing controller is designed for the approximately linearized model of the 6-DOF bicopter. To find the feedback gains of the controller an algebraic Riccati equation is repetitively solved, at each time-step of the control method. Lyapunov stability analysis is used to prove the global stability properties of the control scheme. Next, the article examines a multi-loop flatness-based control method for the dynamic model of the 6-DOF bicopter. The drone’s dynamics is written in the form of two chained subsystems which are shown to be differentially flat. The state vector of the second subsystem becomes virtual control input to the first subsystem, while the control inputs of the first subsystem become setpoints for the second subsystem. Local controllers for the individual subsystems invert their dynamics. The global stability properties of the multi-loop flatness-based control scheme are also proven though Lyapunov analysis.

Keywords: 6-DOF bicopter; Differential flatness properties; Nonlinear H-infinity control; Taylor series expansion; Jacobian matrices; Riccati equation; Global stability; Multi-loop flatness-based control
Drones Veh. Auton.
2025,
2
(2), 10010; 
Open Access

Article

08 May 2025

Evaluating Orthophoto Mosaic Accuracy Using RTK UAVs and AeroPoints 2 Ground Control Points: A User’s Perspective

With the growing use of Real Time Kinematics (RTK) Unmanned Aerial Vehicles (UAVs) and advancements in ground control points (GCPs), assessing positional accuracy of UAV derived orthophoto mosaics is crucial. This study aimed to improve UAV aerial image accuracy for more reliable orthophoto mosaics by examining the positional accuracy of orthophoto mosaics derived with (1) an RTK UAV; and (2) an RTK UAV combined with AeroPoints 2 GCPs. We tested two GPS base station methods for the RTK UAV: self-determined and manually assigned coordinates. The manually assigned coordinates resulted in significantly lower root mean square error (RMSE = 0.0729 m) compared to the self-determined method (RMSE = 1.9762 m), indicating improved accuracy. For the AeroPoints 2 GCPs, we recorded coordinates from a central GCP at a known location and four additional GCPs placed in each cardinal direction. The AeroPoints 2 system showed lower RMSE at all points compared to the RTK, with the central GCP at 0.0136 m, indicating high accuracy. These findings suggest that while RTK UAVs improve accuracy with manual base station assignment, incorporating AeroPoints 2 GCPs provides consistently higher precision across multiple locations. The study highlights the potential of AeroPoints 2 GCPs and suggests further research opportunities to enhance RTK UAV accuracy in areas lacking GPS correctional networks.

Keywords: Real-time kinematic (or RTK); Unmanned aerial vehicle (or UAV); AeroPoints 2; Ground control points (or GCPs); GPS; Positional accuracy
Drones Veh. Auton.
2025,
2
(2), 10009; 
Open Access

Article

29 April 2025

Application of recovered Carbon Black (rCB) by Waste Tire Pyrolysis as an Alternative Filler in Elastomer Products

The increasing global accumulation of End-of-Life (EoL) tires and the growing demand for fossil industrial Carbon Black (CB) call for sustainable alternative solutions. In this context, tire pyrolysis and the resulting recycled raw material recovered Carbon Black (rCB), are considered potential alternatives. In the study, various rCBs were incorporated into new elastomer compounds using a laboratory internal mixer and their properties were investigated. The compounds were selected based on examples of applications such as bicycle inner tubes and hydraulic membranes. By comparing the in-rubber properties of rCB-based compounds with CB reference compounds, an initial assessment of the potential use of rCB for the chosen products was derived. Compared to industrial carbon black, the use of rCB leads to a reduction in performance. Although increasing the filler content partially compensated for the mineral content in rCB and led to a slight improvement, it could not fully offset the performance loss.

Keywords: Recycling; Waste tires; recovered Carbon Black (rCB); Pyrolysis; Rubber filler; Compounding; Sustainability; Circular economy
Adv. Mat. Sustain. Manuf.
2025,
2
(2), 10008; 
Open Access

Article

28 April 2025

Production and Characterization of Recovered Carbon Black (rCB) by Waste Tire Pyrolysis as a Potential Carbon Black (CB) Substitute

Recovered Carbon Black (rCB) from scrap tire pyrolysis offers a potential alternative to fossil-based virgin Carbon Black (CB) in the context of a circular economy. This study investigated the influence of pyrolysis process parameters on rCB yield and quality at laboratory and semi-industrial scales. The resulting rCBs were characterized and found to have surface and structural properties comparable to N500 and N600 series CBs, but with higher mineral and volatile contents. The quality of rCB is influenced by the feedstock composition, particularly the ratio of organic to inorganic components as well as key process parameters such as heating rate, pyrolysis temperature and residence time. Higher heating rates accelerate degradation and shift product distribution toward increased oil yield and reduced rCB formation, while higher pyrolysis temperatures lead to lower volatile content in rCB. Additionally, reactor and process design affect heat distribution, transfer efficiency, and mixing behavior, further shaping rCB properties. However, further testing is required to evaluate the actual in-rubber properties of rCBs. Therefore, additional tests are planned, incorporating rCB into butyl and nitrile rubber-based elastomer compounds, which will be addressed in a follow-up study. In addition, data from the current experiments will support a comprehensive Life Cycle Assessment (LCA) to evaluate the environmental impacts of tire pyrolysis and rCB production compared to other recycling methods, with details to follow in a future publication.

Keywords: Recycling; Chemical recycling; Waste tires; Recovered Carbon Black (rCB); Carbon Black (CB); Pyrolysis; Sustainability; Circular economy
Adv. Mat. Sustain. Manuf.
2025,
2
(2), 10007; 
Open Access

Article

27 April 2025

Steel and Aluminium Moulds: Comparative Analysis of Optimal Parameters to Inject Amorphous and Semicrystalline Polymers

The thermoplastic injection moulding process is very important in the plastics industry, as it enables automated production, supports high productivity and allows the production of plastic parts with complex geometries. It is possible to split into two large groups of polymers: amorphous and semicrystalline. Cooling rate and other injection moulding parameters have a great influence on the final properties of the plastic part. Regarding the use of aluminium as cavity material in injection moulds, new variables must be included in the analysis, since its thermal properties are significantly different from those presented by steels, which are traditionally used. In this way, the purpose of this study was to evaluate the effect of aluminium and steel cavities on different types of thermoplastics belonging to the two classes of polymers by assessing the injection parameters of a high-production part (automotive cup holder). In terms of productivity factors, moulds made of aluminium using semicrystalline polymers showed more significant reductions in cycle time compared to amorphous materials. Specifically, polypropylene exhibited a cycle time reduction between 40.6% and 52.5% when compared to steel moulds, while polyamide showed an even more substantial reduction, ranging between 56% and 63.5%. As for warpage, the amorphous materials displayed the lowest values for both types of moulds, but they also exhibited greater variations in isothermal simulations compared to semicrystalline materials. In relation to the mould materials, aluminium mould exhibited the lowest warping results and smaller variations compared to the isothermal analyses for all polymers.

Keywords: Thermoplastic injection mould; Amorphous; Semicrystalline; Taguchi method; Numerical simulations; Injection moulding
Open Access

Article

27 April 2025

The Impact of Pacemaker Programming on Morbidity in Heart Transplant Recipients

Pacemaker programming recommendations in patients post-heart transplant include a higher lower rate limit, activating rate response mode, maximising battery longevity and minimising ventricular pacing in patients without atrioventricular block. This study sought to investigate how variability in pacemaker programming following orthotopic heart transplant affects morbidity. We conducted a retrospective analysis of heart transplant recipients at a single transplant centre between 1991 and 2023. Patients requiring pacemaker implantation following transplantation were matched with non-pacemaker recipients by age, sex and height. Patient and device characteristics were reviewed. Clinical outcomes, programming and physiological parameters were compared within the pacemaker group and between subject and comparator groups. Forty-five heart transplant recipients were included: 15 with pacemakers and 30 without. Within the pacemaker group, 20% were programmed with LRL > 60 bpm, rate-response mode in 47% and algorithms minimising ventricular pacing in 27%. Fifty-three percent were NYHA class I, and 46% NYHA class II; resting heart rate was similar between the groups (85 (SD14.9) and 79 (SD8) bpm: p = 0.33). NYHA class I group achieved a higher workload (METS 9 (SD2.7) vs. 6.9 (SD1) mL/kg/min: p = 0.21), and peak heart rate (135 (18.8) vs. 123 (14.8) bpm: p = 0.29) during exercise stress echocardiogram (ESE). The pacemaker group was more symptomatic than the comparator group (NYHA class II 46% vs. 10%: p = 0.016) and exhibited higher rates of cardiac allograft vasculopathy (53% vs. 10%: p = 0.005). There is substantial variability in pacemaker programming in heart transplant recipients. Patients who require a pacemaker have a greater symptom and comorbidity burden than those without. No identifiable physiological or programming differences stratified the greater morbidity within the pacemaker cohort.

Keywords: Orthotopic heart transplantation; Permanent pacemaker; Chronotropic incompetence
TOP