Volume 2, Issue 2 (June 2024) – 5 articles

Cover Story (View full-size image):
Cytochrome P450 enzymes (P450s) play a crucial role in the production of many valuable natural compounds by catalyzing specific chemical reactions. These enzymes typically need a special electron transfer system, usually involving an NADPH-dependent reductase, to function properly. However, in photosynthetic organisms, we can bypass this requirement by using the organism's photosynthetic reducing power. Despite this advantage, we need to improve the efficiency of how these electrons are directed to the P450s. Targeting of a P450 to the thylakoid membrane allows it to get its reducing power directly from photosystem I. To improve electron transfer, we created stable versions of three different redox partner fusions in the cyanobacterium Synechocystis sp. PCC 6803. Among the fusions, the one with the FMN binding domain was most efficient in product formation per enzyme unit, even when competing with the natural electron sinks FNR and NADP+. Our work shows that while it's possible to enhance electron transport to P450s in living organisms, it requires careful balancing to avoid disrupting their normal metabolism.  View this paper

Review

08 April 2024

Tolerance in Solventogenic Clostridia for Enhanced Butanol Production: Genetic Mechanisms and Recent Strain Engineering Advances

Biobutanol is a promising candidate for replacing fossil fuels due to its superior properties compared to ethanol. Solventogenic clostridia can naturally produce biobutanol among other valuable chemicals. Lignocellulosic material stands out as a promising source for biobutanol production, avoiding competition with food production and making use of residues from both agroindustry and forestry activities. However, Clostridium strains are subject to different chemical stressors, including oxygen, self-product inhibition, inhibitors generated during biomass pretreatment and hydrolysis, and others. Recent advances in genetic engineering tools have enabled the metabolic engineering of Clostridium strains to increase their robustness and tolerance to these stressors. This review provides a summary of the various types of inhibitors, the genetic mechanisms related to tolerance, and recent strain engineering efforts for tolerance enhancement. In addition, we offer a valuable perspective on the future research directions in this area.

Article

13 May 2024

Expression of Redox Partner Fusions for Light Driven Cytochrome P450s in the Cyanobacterium Synechocystis sp. PCC. 6803

Cytochrome P450s (P450s) catalyze stereo- and regioselective monooxygenations in the biosynthesis of a wide range of valuable natural compounds. The turnover of P450s requires dedicated electron transfer, usually via a NADPH-dependent reductase. The need for an NADPH-dependent reductase can be circumvented if expressed in photosynthetic organisms by exploiting the photosynthetic reducing power. However, partitioning reducing equivalents towards the P450s needs further optimization. Using our model P450, SbCYP79A1, we have previously shown that by targeting this P450 to the thylakoid membrane, the P450 can obtain its reducing power directly from photosystem I via soluble ferredoxin. Furthermore, we demonstrated using transient expression that fusing a soluble electron carrier to this P450 improves electron partitioning towards the P450 in tobacco. In order to characterize these fusions in a stably transformed organism, we expressed three different redox partner fusions in the cyanobacterium Synechocystis sp. PCC. 6803. We show that biochemical trends observed in the tobacco system are recapitulated in stably transformed Synechocystis sp. PCC. 6803. Overall, the FMN binding domain fusion produces the most oxime per unit of enzyme with and without the presence of the endogenous competing electron sink FNR and NADP+. However, the overall yield of oxime is comparable to the other strains, due to poor steady state levels of the fusion protein. Synechocystis sp. PCC. strains expressing the P450-FMN fusion also display a chlorotic phenotype that can be rescued by switching the nitrogen source from nitrate to ammonia, implying impaired nitrate assimilation. Optimizing electron transport towards the P450 is indeed possible in vivo but also highlights interference with native metabolic processes.

Review

20 May 2024

Advancements in the Bio-degradation of Plastic Waste into Value-added Chemicals: A Recent Perspective

Plastics are an essential component of modern life, but the plastic waste has caused significant environmental pollution and economic losses. The effective solution to these problems is the biodegradation and high-value conversion of plastic waste. After biodegradation, plastic waste is broken into smaller molecules and eventually transformed into innocuous substances like water, carbon dioxide and biomass. High-value conversion enables plastic waste to be converted into products with higher economic value and environmental friendliness. Based on this, we summarize the biodegradation methods of bioplastics and analyze the shortage of these methods. Subsequently, we summarize the progress of converting the degradation products into value-added chemicals, comprehensively analyze the advantages and disadvantages of these bioconversion process, and propose some strategies to address these disadvantages. Finally, we analyze the significance of establishing a microbial-based conversion process that integrates the degradation and the conversion, and propose some potential strategies.

Review

24 May 2024

Current Progress on Microbial l-malic Acid Production

As an important intermediate in the tricarboxylic acid (TCA) cycle, l-malic acid (l-MA) is also one of the 12 important platform bulk chemicals with high added value. Owing to its various applications in food, pharmaceuticals, cosmetics and industry, the global l-MA market size is growing year by year. Over the last few decades, increasing concerns regarding fossil fuels depletion and excessive CO2 emissions have led the global commitment to fostering a green economy and sustainable development. Alternatively, the sustainable microbial fermentation of l-MA has gradually attracted more and more attention. Here, this review summarizes the common l-MA biosynthesis pathways and compares the differences between different chassis microorganisms as well. Moreover, regulation strategies of genetic metabolic engineering and fermentation process to boost the l-MA production are summarized, and the research status of l-MA production from the cheaper substrates is also discussed. Finally, the direction of further exploration of industrialized l-MA biosynthesis is proposed, which provides a theoretical guidance on promoting technological innovation in industrial l-MA production.

Article

17 June 2024

Cytosine Deaminase-Assisted Mutator for Genome Evolution in Cupriavidus necator

Cupriavidus necator H16 has been intensively explored for its potential as a versatile microbial cell factory, especially for its CO2 fixation capability over the past few decades. However, rational metabolic engineering remains challenging in the construction of microbial cell factories with complex phenotypes due to the limited understanding of its metabolic regulatory network. To overcome this obstacle, laboratory adaptive evolution emerges as an alternative. In the present study, CAM (cytosine deaminase-assisted mutator) was established for the genome evolution of C. necator, addressing the issue of low mutation rates. By fusing cytosine deaminase with single-stranded binding proteins, CAM introduced genome-wide C-to-T mutations during DNA replication. This innovative approach could boost mutation rates, thereby expediting laboratory adaptive evolution. The applications of CAM were demonstrated in improving cell factory robustness and substrate utilization, with H2O2 resistance and ethylene glycol utilization as illustrative case studies. This genetic tool not only facilitates the development of efficient cell factories but also opens avenues for exploring the intricate phenotype-genotype relationships in C. necator.

TOP