Issue 4, Volume 2 – 4 articles

Open Access

Review

03 September 2025

Defect Engineering in Carbon-Based Metal-Free Catalysts: Active Sites, Reduction Mechanisms, and 3D Architectures for Sustainable 4-Nitrophenol Reduction

Nitrophenols (NPs), classified as priority pollutants due to their significant toxicity, persistence, and bioaccumulation potential, pose severe threats to ecosystems and human health. Catalytic reduction, particularly the conversion of NPs like 4-nitrophenol (4-NP) to less toxic aminophenols using sodium borohydride (NaBH4), represents a promising remediation strategy. While conventional metal-based catalysts face limitations including high cost, poor durability, and potential metal leaching, carbon-based metal-free catalysts (C-MFCs) have emerged as highly efficient, sustainable, and cost-effective alternatives. However, the precise reaction mechanisms governing NP reduction over C-MFCs remain ambiguous, and significant debate surrounds the nature of the active sites and the structure-activity relationships dictating performance. This review systematically elucidates the catalytic sites and associated reduction mechanisms in C-MFCs. We comprehensively summarize design principles centered on defect engineering strategies, encompassing single-atom (N, S, B, P, O), dual-atom (B,N; N,S; N,P), and tri-atom (B,N,F; N,P,F) doping, alongside non-doping defects such as edge and pore defects. The critical structure-performance relationships linking these engineered active sites to catalytic activity (e.g., turnover frequency, TOF) are analyzed, integrating experimental evidence and theoretical insights. Furthermore, strategies for constructing three-dimensional architectures to enhance active site accessibility and catalyst stability are highlighted. This work provides fundamental insights to guide the rational design of next-generation high-performance C-MFCs for sustainable nitrophenol pollution control.

Open Access

Article

05 September 2025

A Green Way for the Synthesis of Ester Oil by an Ionic Liquid as Both a Catalyst and Lubricant Additive

A series of ionic liquids 1-alkyl-3-methylim idazole bis(2-ethylhexyl) phosphate, were prepared, and the catalytic performance of ionic liquids was evaluated through the esterification reaction of pentaerythrotol and hexanoic acid at a stoichiometric ratio as a model reaction. The results showed that the [BMIM][DEHP] and [HMIM][DEHP] exhibited good catalytic activity. The [HMIM][DEHP] was chosen as a lubricant additive to further investigate the tribological properties after the reaction, and the results for both COF and WSD and wear volume indicate that the introduction of [HMIM][DEHP] has improved the friction reducing and anti-wear properties of pentaerythrotol tetra-hexanoate.

Open Access

Article

28 September 2025

Enhancing the Performance of Sr2Fe1.3Ni0.2Mo0.5O6−δ as Methane-Fueled SOFC Anode via In-Situ Exsolution of Ni-Fe Nano-Catalyst

The Sr2Fe1.5Mo0.5O6−δ (SFMO) perovskite exhibits promising performance as a solid oxide fuel cell (SOFC) anode for hydrogen fuel but demonstrates limited catalytic activity with hydrocarbon fuels. To address this limitation, a Sr2Fe1.3Ni0.2Mo0.5O6−δ (SFNMO) perovskite was developed via B-site Ni substitution, and its in-situ exsolution behavior and methane electrooxidation performance were systematically investigated. Combined XRD, SEM, and TEM-EDS analyses reveal the in-situ exsolution of Ni-rich Ni-Fe alloy nanoparticles from the SFNMO matrix under a hydrogen atmosphere. A symmetrical SOFC employing Gd0.1Ce0.9O2−δ (GDC) electrolyte and SFNMO electrodes achieved an initial maximum power density of 82 mW cm−2 in wet methane fuel at 800 °C, which represents an approximately 33% improvement over the symmetrical cell with SFMO electrode (61 mW cm−2). Remarkably, the cell maintained stable operation under constant current for 50 h in methane fuel, with the peak power density further increasing to 113 mW cm−2, demonstrating the excellent catalytic activity of the in-situ exsolved Ni-Fe nanoparticles for methane conversion.

Green Chem. Technol.
2025,
2
(4), 10017; 
Open Access

Article

11 October 2025

Catalytic Potential of Green-Synthesized Iron Nanoparticles from Psidium guajava for 4-Nitrophenol Reduction

This study presents a sustainable approach for the green synthesis of iron nanoparticles (Fe(NPs)) using an aqueous extract of Psidium guajava (guava leaves) as a reducing and stabilizing agent. The FeNPs were applied in the catalytic reduction of 4-nitrophenol. To minimize the use of sodium borohydride (NaBH4), different volumetric ratios of plant extract and NaBH4 were tested. The influence of these ratios on the physicochemical and morphological properties of the FeNPs was evaluated using X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM/EDS), high-resolution field-emission SEM (HR-FESEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and N₂ physisorption. Increasing the proportion of plant extract led to reduced crystallinity, larger particle sizes, and lower surface areas. Despite these changes, using up to 40% extract improved catalytic performance, achieving over 90% reduction of 4-nitrophenol. Ecotoxicological assessments confirmed the biocompatibility of the FeNPs, the effective neutralization of 4-nitrophenol toxicity post-reduction, and highlighted the inherent toxicity of NaBH4. These findings demonstrate the potential of Psidium guajava-mediated FeNPs as eco-friendly catalysts for pollutant reduction, combining efficiency with reduced environmental impact.

TOP