Nitrophenols (NPs), classified as priority pollutants due to their significant toxicity, persistence, and bioaccumulation potential, pose severe threats to ecosystems and human health. Catalytic reduction, particularly the conversion of NPs like 4-nitrophenol (4-NP) to less toxic aminophenols using sodium borohydride (NaBH4), represents a promising remediation strategy. While conventional metal-based catalysts face limitations including high cost, poor durability, and potential metal leaching, carbon-based metal-free catalysts (C-MFCs) have emerged as highly efficient, sustainable, and cost-effective alternatives. However, the precise reaction mechanisms governing NP reduction over C-MFCs remain ambiguous, and significant debate surrounds the nature of the active sites and the structure-activity relationships dictating performance. This review systematically elucidates the catalytic sites and associated reduction mechanisms in C-MFCs. We comprehensively summarize design principles centered on defect engineering strategies, encompassing single-atom (N, S, B, P, O), dual-atom (B,N; N,S; N,P), and tri-atom (B,N,F; N,P,F) doping, alongside non-doping defects such as edge and pore defects. The critical structure-performance relationships linking these engineered active sites to catalytic activity (e.g., turnover frequency, TOF) are analyzed, integrating experimental evidence and theoretical insights. Furthermore, strategies for constructing three-dimensional architectures to enhance active site accessibility and catalyst stability are highlighted. This work provides fundamental insights to guide the rational design of next-generation high-performance C-MFCs for sustainable nitrophenol pollution control.
A series of ionic liquids 1-alkyl-3-methylim idazole bis(2-ethylhexyl) phosphate, were prepared, and the catalytic performance of ionic liquids was evaluated through the esterification reaction of pentaerythrotol and hexanoic acid at a stoichiometric ratio as a model reaction. The results showed that the [BMIM][DEHP] and [HMIM][DEHP] exhibited good catalytic activity. The [HMIM][DEHP] was chosen as a lubricant additive to further investigate the tribological properties after the reaction, and the results for both COF and WSD and wear volume indicate that the introduction of [HMIM][DEHP] has improved the friction reducing and anti-wear properties of pentaerythrotol tetra-hexanoate.