Issue 1, Volume 3 – 1 articles

Open Access

Article

21 November 2025

Effect of Support Preparation Method on the Performance of Ni/SrTiO3 Catalysts for Dry Reforming of Methane

Dry reforming of methane (DRM) offers an efficient route to simultaneously convert CH4 and CO2 into synthesis gas (H2/CO), a key intermediate to produce fuels and valuable chemicals. Ni-based catalysts are regarded as the most promising candidates due to their high activity and low cost; however, their stability remains a major obstacle under the DRM conditions. Perovskite-type oxides such as SrTiO3 possess high thermal stability, tunable composition, and strong metal-support interactions, making them ideal to enhance the dispersion and durability of Ni species. In this study, Ni/SrTiO3 catalysts were synthesized via co-precipitation (CP), hydrothermal (HT), and sol-gel (SG) methods, and were comprehensively characterized before and after the reaction. The characterizations revealed that all samples preserved the perovskite framework after reduction and reaction. Among them, Ni/HT-STO and Ni/SG-STO exhibited larger surface areas (18.8 and 13.9 m2·g−1) and higher initial CH4 conversions (66.3% and 68.9%) than Ni/CP-STO (44.8%). However, Ni/HT-STO underwent rapid deactivation, with CH4 conversion decreasing to 21.2% after 60 h due to severe carbon accumulation (12.4 wt%) and notable Ni particle growth. In contrast, the sol-gel derived Ni/SG-STO maintained a higher activity (25.6% after 60 h) with moderate carbon deposition (9.2 wt%) and showed the smallest Ni particle growth of only 2.64 nm (from 14.91 to 17.55 nm), compared with 4.29 nm for Ni/CP-STO (25.83 to 30.12 nm) and 6.08 nm for Ni/HT-STO (27.12 to 33.20 nm). Temperature-programmed surface reaction (TPSR) analysis further revealed that Ni/SG-STO exhibited a more balanced CH4 activation and CO2 dissociation, enabling efficient carbon-oxygen coupling and inhibiting graphitic carbon formation. Overall, these results demonstrate that the sol-gel method effectively enhances the anti-sintering and anti-coking performance of Ni/SrTiO3 catalysts.

TOP