Deadline for manuscript submissions: 31 July 2024.
The structure of the drying section in papermaking process is complex and too compacted to install sensors. In order to monitor the parameters in dynamic and manage the process practically with virtual simulations instead of physical experiments, a digital twin-based process parameter visualization model is constructed in this study. Regarding to the possible missing data in the modeling framework, it is proposed to combine industrial data, and knowledge of mechanism with intelligent algorithms to fill in the missing parameters. Upon which, a digital twin-based data visualization model is established using CADSIM Plus simulation software. Both of the knowledge -based mechanism solution model and the random forest-based parametric prediction model perform well, and the predicted parameters can support the digital twin visualization model in CADSIM Plus. Visual modeling of surface condenser in the paper drying section was realized for example, and results show that the model is capable of monitoring the dynamic changes of parameters in real time, so as to support the optimization and decision making of papermaking process such as formation, drying, et al.
This study examines the root causes of vibration and wear in centrifugal compressors, particularly emphasising strainer obstruction in hydrocarbon processing environments. Strainer fouling is primarily driven by deposits from inlet gas compositions and deviations in operating conditions, which restrict flow, increase vibration, and accelerate component degradation. A combined methodology was applied to investigate these issues, including baroscopic inspection of compressor internals, chemical analysis of deposited materials, and evaluation of operational records against design specifications. Maintenance histories and strainer cleaning frequencies were also reviewed to establish links between performance decline and operating practices. The findings show that chemical cleaning is the most effective and cost-efficient solution, outperforming high-pressure water jet cleaning and full compressor overhauls by minimising downtime, restoring flow dynamics, and improving mechanical stability. Successful implementation across multiple compressors confirmed its scalability and reliability. This research validates chemical cleaning as a preferred maintenance strategy, delivering significant operational and economic benefits while extending compressor service life.