Sort by

Found 8 results

Article

11 April 2024

Exploring Bi4V2O11 as Photoanode for Water Splitting with a Wide Range of Solar Light Capture and Suitable Band Potential

Bi4V2O11 possesses a bandgap of ~1.9 eV, and the band positions of minimum conduction band and maximum valence band straddle the redox potentials of H+/H2 and O2/H2O. In the current work, photoanode made of particulate Bi4V2O11 film displays a wide range of light adsorption. However, when the anode was fabricated by drop-casting and examined for photoelectrochemical water splitting, the photocurrent density of the pristine Bi4V2O11 was low. Improvement has then been carried out by Mo-doping. The Mo-doped Bi4V2O11 photoanode achieves a maximum photocurrent density of 0.3 mA/cm2 after a post deposition necking treatment to improve the connectivity of the drop-cast particles in the film. This material also shows a stability with maintaining 80% photocurrent after 2 h test. Discussion has been made on the displayed performance in PEC water splitting of the Bi4V2O11 materials. Potential solutions have been proposed for this type of promising photoanode material for water splitting.

Keywords: Visible light photocatalyst; Bi4V2O11; Photoelectrochemical water splitting; Photoanode

Review

02 April 2024

Mapping the (in)Effective Enforcement of EU Environmental Law in Greece: Lessons from the EU and Domestic Courts

The effective implementation and enforcement of EU environmental law at national level constitutes a thorny issue with both legal and practical aspects. Greece is among the EU Member States which has historically faced difficulties in complying with the EU environmental acquis due to the poor functioning of the Greek administration, the limited manpower, expertise and resources (especially during the recent period of the economic crisis) for the competent authorities, the lack of political will, the low awareness of environmental problems. In this context, this paper aspires to unpack these enforcement challenges at the national level based on the case law of both the Greek Council of State and the Court of Justice of the European Union. Considering that waste management, nature protection, and water and air quality sectors are recognized as areas with the most significant deficiencies in implementation at the domestic level, the analysis will focus on these four key sectors.  To this end, by reviewing the relevant EU and Greek jurisprudence, this paper aspires to identify the disparities between the formal requirements and the practical application of EU environmental regulations in Greece in light of the national political, economic, social, and cultural dynamics. 

Keywords: Compliance; Biodiversity; Water; Waste; Air pollution; EU green deal; Environmental law; Greece; Case law

Article

13 March 2024

The Potential of Salinity Gradient Energy Using Reverse Electrodialysis to Generate Electricity for Seawater Desalination Plants, an example from Western Australia

Seawater desalination plays a vital role in addressing the increasing global demand for freshwater. However, the energy-intensive nature of desalination processes and the generation of brine by-products pose environmental challenges. In Western Australia (WA), approximately 48% of freshwater is supplied by two seawater desalination plants employing the energy-intensive seawater reverse osmosis (SWRO) method. These plants are powered by a combination of renewable and conventional energy sources. Typically, the most efficient approach for desalination plants involves a blend of renewable energy sources. Salinity gradient energy (SGE) harnessed through the reverse electrodialysis (RED) system, which derives energy from mixing waters with varying salinities, has emerged as a potential solution. RED utilizes ion-exchange membranes to convert the chemical potential difference between two solutions into electric power. The net specific energy of SGE, calculated based on the Gibbs free energy associated with mixing seawater and wastewater, is estimated at approximately 0.14 kWh per cubic metre of brine for SWRO desalination plants. The combined SGE potential of WA’s two desalination facilities theoretically amounts to approximately 87.4 MWh of energy. However, due to the inherent limitations of the RED system’s current energy efficiency, only about 2.5% of the desalination plant’s energy requirements can be met through this technique. This paper addresses a significant gap in the literature by analyzing the technical and economic constraints of utilizing salinity gradient energy (SGE) through the reverse electrodialysis (RED) system for seawater desalination plants. This marks the first examination of its kind, shedding light on both the technical feasibility and economic challenges of SGE-RED application in this context. The scientific contribution lies in its innovative approach, integrating technical and economic perspectives to provide an understanding of SGE-RED technology’s potential drawbacks and opportunities. By identifying and tackling these challenges, this paper aims to pave the way for optimizing SGE-RED systems for practical implementation in seawater desalination plants.

Keywords: Salinity Gradient Energy (SGE); Reverse Electrodialysis (RED); Seawater desalination; Renewable clean energy; Western Australia desalination plants

Article

19 September 2023

Advancing Green Hydrogen Production in Saudi Arabia: Harnessing Solar Energy and Seawater Electrolysis

The transition to clean and sustainable energy sources is crucial for combating the challenges posed by climate change. Green hydrogen, produced through renewable energy-driven electrolysis, holds significant promise as a viable clean energy carrier. The study introduces a system that leverages abundant solar energy and utilizes seawater as the feedstock for electrolysis, potentially offering a cost-effective solution. A comprehensive mathematical model, implemented in MATLAB, is employed to simulate the design and operational efficiency of the proposed green hydrogen production system. The system’s core components include solar panels as a clean energy source, an advanced MPPT charge controller ensuring optimal power delivery to the electrolyzer, and a seawater tank serving as the electrolyte source. The model combines these elements, allowing for continuous operation and efficient hydrogen production, addressing concerns about energy losses and cost-effectiveness. Results demonstrate the influence of solar irradiance on the system’s performance, revealing the need to account for seasonal variations when designing green hydrogen production facilities. Theoretical experiments are conducted to evaluate the behavior of a lithium battery, essential for stabilizing the system’s output and ensuring continuous operation during periods of low solar radiation. 

Keywords: Solar energy; PV; Green hydrogen; Seawater electrolysis

Article

15 August 2023

Thermal and Economic Evaluations of a Drain Water Heat Recovery Device under Transient Conditions

This study explores the transient characteristics of a drain water heat recovery (DWHR) device employed for heat recovery from warm grey water in buildings. Experimental measurements were conducted to investigate the response time of the DWHR device under various flow conditions. The thermal performance of the system was assessed using both transient and steady-state effectiveness analyses. The findings reveal that the response time is influenced by the water volume within the system, with an increase observed, and by the water flow rate, which leads to a decrease in response time. Additionally, a decrease in effectiveness is noted when hot water is used in short and frequent intervals. Furthermore, an economic analysis demonstrates that considering the transient behavior of the device results in a significant overall decrease of 37% in annual savings. Specifically, the usage of sinks exhibits a reduction in annual savings by 56%, while showers show a decrease of 13% in annual savings.

Keywords: Drain water heat recovery; Heat exchanger; Experimental investigation; Transient

Article

21 March 2023

Waterborne Polyurethane Dispersion Synthesized from CO2 Based Poly (Ethylene Carbonate) Diol with High Performance

CO2-based aliphatic polycarbonates (APCs) are not widely commercialized due to the poor performance and high cost, compared to the traditional synthetic materials. In this paper, poly(ethylene carbonate) diol (PECD) was synthesized from CO2 and ethylene oxide (EO), and the comprehensive properties were characterized. Furthermore, the preparation and properties of waterborne polyurethane dispersion (WPU) derived from PECD were studied. The result showed that PECD had high reactivity, narrow molecular weight distribution index and excellent thermal stability. The obtained WPU exhibited superior tensile performance, adhesion properties and surface hardness. Due to the low cost of EO and CO2, PECD is expected to be widely used in the preparation of polyurethanes.

Keywords: Carbon dioxide; Ethylene oxide; Poly(ethylene carbonate) diol; Waterborne polyurethane

Article

13 March 2023

Reduced Climate Impacts of Dairy Sludge Management by Introducing Hydrothermal Carbonization

Dairies which produce cheese and milk products can, however, produce large volumes of wastewater that require treatment, usually via activated sludge treatment. Disposal of the resulting activated sludge to land is viewed favorably as the sludge is rich in phosphorus (P) and nitrogen (N) and enables nutrient recycling. Nonetheless, sludge management can significantly influence the greenhouse gas (GHG) emissions to the atmosphere. This manuscript has modelled the GHG emissions arising from two sludge management strategies currently adopted by Danish dairies whereby: (i) sludge is stored and later applied to fields; or (ii) sludge is treated by anaerobic digestion (AD), stored, and the digestate will later be applied to fields. This is compared to (iii) an alternative sludge management strategy with treatment by Hydrothermal Carbonization (HTC). HTC is a technologically simple sludge treatment that could lower the cost for dewatering dairy sludge, forming a biochar-like material known as hydrochar. The produced hydrochar can be applied to the land for the purpose of carbon sequestration, P and N recycling. Our calculations indicate that GHG balances of HTC sludge management can result in a net carbon sequestration of 63 kg CO2eq per ton sludge, as opposed to net emissions of 420 and 156 kg CO2eq per ton sludge for strategies (i) and (ii), therefore offering significant reductions GHG emissions for the dairy sector.

Keywords: Hydrothermal carbonization; Fertilizer; Biosolids; Sludge management; Sludge disposal; Sludge dewatering; Greenhouse gas emissions; Dairy waste

Article

03 March 2023

SnS2 Quantum Dots Decorated MoS2 Nanosheets Enabling Efficient Photocatalytic H2 Evolution in CO2 Saturated Water

SnS2/MoS2 heterojunction nanocomposite was prepared by a one-step hydrothermal synthesis method. The nanocomposite exhibited much improved photocatalytic hydrogen evolution performance in CO2 saturated solution compared with pure MoS2 and SnS2 samples. The improved photocatalytic activity was attributed to the S-scheme heterojunction structure between SnS2 quantum dots and MoS2 nanosheets which facilitate electron-hole separation both in MoS2 and SnS2. In the S-scheme structure, the strong reduction ability of SnS2 quantum dots was well maintained for the improved H2 evolution. In situ DRIFT studies allowed us to suggest reaction pathways from CO2 and H2O to photocatalytic H2, CO, and CH4 generation.

Keywords: Photocatalysis; H2 evolution; CO2 hydrogenation; S-scheme
TOP