1.
Li L, Zheng B, Liu L. Biomonitoring and Bioindicators Used for River Ecosystems: Definitions, Approaches and Trends.
Procedia Environ. Sci. 2010,
2, 1510–1524. doi:10.1016/j.proenv.2010.10.164.
[Google Scholar]
2.
Wang X, Zheng B, Liu L, Li L. Use of Diatoms in River Health Assessment.
Annu. Res. Rev. Biol. 2014,
4, 4054–4074.
[Google Scholar]
3.
Markert B. Bioindication and Biomonitoring as Innovative Biotechniques for Controlling Heavy Metal Data of the Environment. Plenary lectures. In Proceedings of the15th ICHMET, Gdansk, Poland, 19–23 September 2010; pp. 44–48.
4.
Paul MJ, Walsh B, Oliver J, Thomas D. Algal Indicators in Streams: A Review of Their Application in Water Quality Management of Nutrient Pollution; U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology: Washington, DC, USA, 2021; pp. 1–44.
5.
Chomczyn’ska M, Montusiewicz A, Malicki J, Lagód G. Application of Saprobes for Bioindication of Wastewater Quality.
Environ. Eng. Sci. 2009,
26, 289–295. doi:10.1089/ees.2007.0311.
[Google Scholar]
6.
Lebkuecher JG, Tuttle EN, Johnson JL, Willis NKS. Use of algae to assess the trophic state of a stream in Middle Tennessee.
J. Freshw. Ecol. 2015,
30, 349–376, doi:10.1080/02705060.2014.951883.
[Google Scholar]
7.
European Parliament and Council of the European Union. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy.
Off. J. Eur. Union 2000,
L327, 1–73.
[Google Scholar]
8.
Wiłkomirski B. History of bioindication (Historia bioindykacji),
Monit. Sr. Przyr. 2013,
14, 137–142.
[Google Scholar]
9.
Burger J. Bioindicators: Types, Development, and Use in Ecological Assessment and Research.
Environ. Bioindic. 2006,
1, 22–39. doi:10.1080/15555270590966483.
[Google Scholar]
10.
Barinova S. Essential and practical bioindication methods and systems for the water quality assessment.
Int. J. Environ. Sci. Nat. Resour. 2017,
2, 1–11. doi:10.19080/IJESNR.2017.02.555588.
[Google Scholar]
11.
Jackowiak B, Lawenda M. How Does Sharing Data from Research Institutions on Global Biodiversity Information Facility Enhance Its Scientific Value?
Diversity 2025,
17, 221. doi:10.3390/d17040221.
[Google Scholar]
12.
Guiry MD, Guiry GM. AlgaeBase World-Wide Electronic Publication; National University of Ireland: Galway, Ireland, 2013. Available online: http://www.algaebase.org (accessed on 24 January 2025).
13.
Barinova S. Plants, mosses, charophytes, protozoan, and bacteria water quality indicators for assessment of organic pollution and trophic status of continental water bodies.
Transylv. Rev. Syst. Ecol. Res. 2021,
23, 17–36. doi:10.2478/trser-2021-0018.
[Google Scholar]
14.
Barinova S, Dyadichko V. Zoological Water Quality Indicators for Assessment of Organic Pollution and Trophic Status of Continental Water Bodies.
Transylv. Rev. Syst. Ecol. Res. 2022,
24, 65–106. doi:10.2478/trser-2022-0021.
[Google Scholar]
15.
Barinova S, Fahima T. The Development of a World Database of Freshwater Algae-Indicators.
J. Environ. Ecol. 2017,
8, 1–7.
[Google Scholar]
16.
Barinova SS, Medvedeva LA, Anissimova OV. Diversity of Algal Indicators in Environmental Assessment; Pilies Studio Publisher: Tel Aviv, Israel, 2006; 498p. (In Russian)
17.
Barinova SS, Bilous OP, Tsarenko PM. Algal Indication of Water Bodies in Ukraine: Methods and Perspectives; Publishing House of Haifa University: Haifa, Israel; Kyiv, Ukraine, 2019; 367p. (In Russian)
18.
Barinova S, Smith T. Flora of Algae and Cyanobacteria of Continental Waters of Israel in the XXI Century: Taxonomy, Autecology and Water Quality Indicators.
Diversity 2022,
14, 328. doi:10.3390/d14050328.
[Google Scholar]
19.
Barinova S, Krupa E, Khitrova E. Spatial Distribution of the Taxonomic Diversity of Phytoplankton and Bioindication of the Shallow Protected Lake Borovoe in the Burabay National Natural Park, Northern Kazakhstan.
Diversity 2022,
14, 1071. doi:10.3390/d14121071.
[Google Scholar]
20.
UNEP/IPCS. Training Module No. 3. Section C, Ecological Risk Assessment, Prepared by The Edinburgh Centre for Toxicology. Available online: http://www.chem.unep.ch/irptc/Publications/riskasse/C2text.pdf (accessed on 20 March 2006).
21.
Whitton BA. Algae. In River Ecology; Whitton BA, Ed.; Blackwell Sci. Publ.: Oxford, UK, 1975; pp. 81–105.
22.
Barinova SS, Medvedeva LA. Atlas of Algae as Saprobic Indicators (Russian Far East); Dal’nauka Press: Vladivostok, Russia, 1996; 364p. (In Russian)
23.
Aleem AA. A taxonomic and Paleological investigation of the diatom-flora of the extinct Fayoum lake (Upper Egypt). II. Distribution and ecology
. Univ. Alex. Bull. 1959,
2, 217–244.
[Google Scholar]
24.
Alyabina GA, Sorokin IN. The stock of substances in the watershed, the conditions for their implementation and entry into the watershed. In Changes in the Watershed-Lake System Under the Influence of the Anthropogenic Factor; Sorokin IN, Ed.; Nauka: Saint Petersburg, Russia, 1983; pp. 62–68.
25.
Asaul ZI. Key to Euglenoid Algae of the Ukrainian SSR; Naukova Dumka: Kyiv, Ukraine, 1975; 408p.
26.
Barinova SS, Medvedeva LA. Watanabe’s method in assessing organic pollution of waters.
Algologia 1998,
8, 428–448.
[Google Scholar]
27.
Barinova SS, Tavassi M, Nevo E. Microscopic Algae in Monitoring of the Yarqon River (Central Israel); LAP Lambert Academic Publishing: Saarbrücken, Germany, 2010.
28.
Barinova S, Ali N, Barkatullah SF. Ecological Adaptation to Altitude of Algal Communities in the Swat Valley (Hindu Cush Mountains, Pakistan).
Expert Opin. Environ. Biol. 2013,
2, 1–15. doi:10.2478/s13545-014-0150-y.
[Google Scholar]
29.
Barinova SS, Anissimova OV, Nevo E, Jarygin MM, Wasser SP. Diversity and Ecology of Algae from Nahal Qishon, Northern Israel.
Plant Biosyst. 2004,
138, 245–259. doi:10.1080/11263500400006985.
[Google Scholar]
30.
Barinova SS, Tsarenko PM, Nevo E. Algae of experimental pools on the Dead Sea coast, Israel.
Isr. J. Plant Sci. 2004,
52, 265–275. doi:10.1560/V889-764E-MCDY-NPDP.
[Google Scholar]
31.
Becker R, Doege A, Schubert H, Van de Weyer K. Bioindikation mit Characeen. In Armleuchteralgen; Arbeitsgruppe Characeen Deutschlands Lehrstuhl für Ökologie der Universität, Ed.; Springer Spektrum: Berlin/Heidelberg, Germany, 2016. doi:10.1007/978-3-662-47797-7_8.
32.
Bigler C, Hall RI. Diatoms as indicators of climatic and limnological change in Swedish Lapland: A 100-lake calibration set and its validation for paleoecological reconstructions.
J. Paleolimnol. 2002,
27, 97–115.
[Google Scholar]
33.
Charles DF. Relationships between surface sediment diatom assemblages and lakewater characteristics in Adirondark lakes.
Ekology 1985,
66, 994–1011.
[Google Scholar]
34.
Charles DF, Acker FW, Hart DD, Reimer CW, Cotter PB. Large-scale regional variation in diatom-water chemistry relationships: Rivers of the eastern United States. In Advances in Algal Biology: A Commemoration of the Work of Rex Lowe; Springer: Dordrecht, Germany, 2006; pp. 27–57.
35.
Chen G, Dalton C, Leira M, Taylor D. Diatom-based total phosphorus (TP) and pH transfer functions for the Irish Ecoregion.
J. Paleolimnol. 2008,
40, 143–163.
[Google Scholar]
36.
Clavero E, Hernández-Mariné M, Grimalt JO, Garcia-Pichel F. Salinity tolerance of diatoms from thalassic hypersaline environments.
J. Phycol. 2000,
36, 1021–1034.
[Google Scholar]
37.
Coesel PFM, Meesters KJ. Desmids of Lowlands: Mesotaeniaceae and Desmidiaceae of the European Lowlands; KNNV Publishing: Zeist, The Netherland, 2007; 351p.
38.
Davydova NN. Diatoms in the bottom sediments of lakes in South-Eastern Latvia. In Changes in the System “Catchment Area—Lake” under the Influence of Anthropogenic Factors; Nauka: Saint Petersburg, Russia, 1983; pp. 201–229.
39.
Davydova NN. Diatoms—Indicators of Natural Conditions of Water Bodies in the Holocene; Nauka: Saint Petersburg, Russia, 1985; 253p.
40.
Davydova NN, Petrova NA. Ecological and systematic characteristics of the algae of Lake Ladoga. In Plant Resources of Lake Ladoga; Leningrad State University: Saint Petersburg, Russia, 1968; pp. 175–179.
41.
Davydova NN. Diatoms in cores of bottom sediments of the Pskovsko-Peipsi Lake. In Bottom Sediments of the Pskov-Peipsi Lake; Raukas AV, Ed.; Institute of Geology of the Academy of Sciences of the Estonian SSR: Tallinn, Estonia, 1981; pp. 56–73.
42.
Dedussenko-Shchegoleva IT, Gollerbakh MM. Yellow-Green Algae; Guide to freshwater algae of the USSR, Issue 5; Publishing House of the USSR Academy of Sciences: Moscow, Russia; Saint Petersburg, Russia, 1962; 272p.
43.
Denys L. A Check-List of the Diatoms in the Holocene Deposits of the Western Belgian Coastal Plain with a Survey of Their Apparent Ecological Requirements; Ministerie van Economische Zaken: Brussels, Belgium, 1991; 41p.
44.
Dixit SS, Dickman ND. Correlation of surfase sediment diatoms with the present lake water pH in 28 Algoma lakes, Ontario, Canada.
Hydrobiologia 1986,
131, 133–143.
[Google Scholar]
45.
Foged N. Freshwater and Littoral Diatoms from Cuba. In Bibliotheca Diatomologica; J. Cramer: Vaduz, Liechtenstein, 1984; Volume 5, 243p.
46.
Foged N. Diatoms in Gambia. In Bibliotheca Diatomologica; J. Cramer: Stuttgart, Germany, 1986; Volume 12, pp. 1–153.
47.
Fore LS, Grafe C. Using diatoms to assess the biological condition of large rivers in Idaho (USA).
Freshw. Biol. 2002,
47, 2015–2037.
[Google Scholar]
48.
Fritz SC, Juggins S, Battarbee RW. Diatom assemblages and ionic characterization of lakes of the northern Great Plains, North America: a tool for reconstructing past salinity and climate fluctuations.
Can. J. Fish. Aquat. Sci. 1993,
50, 1844–1856.
[Google Scholar]
49.
Gollerbakh MM, Kossinskaya EK, Polyansky VI. Blue-Green Algae; Guide to freshwater algae of the USSR, Issue 2; Soviet Science: Moscow, Russia, 1953; 652p.
50.
Hall RI, Smol JP. Paleolimnological assessment of long-term water-quality changes in south-central Ontario lakes affected by cottage development and acidification.
Can. J. Fish. Aquat. Sci. 1996,
53, 1–17.
[Google Scholar]
51.
Hortobagyi T. The Microflota in the Setting and Subsoil Water Enriching Basins of the Budapest Waterworks; Akademial Kiade: Budapest, Hungary, 1973; 341p.
52.
Index Nominum Algarum, Bibliographia Phycologica Universalis, University Herbarium, University of California, Berkeley. Compiled by Paul Silva. Available online: http://ucjeps.berkeley.edu/INA.html (accessed on 3 March 2025).
53.
John DM, Whitton BA, Brook AJ. (Eds.) The Freshwater Algal Flora of the British Isles. An Identification Guide to Freshwater and Terrestrial Algae; Cambridge University Press: Cambridge, UK, 2002; 702p.
54.
John J. A Guide to Diatoms as Indicators of Urban Stream Health. 2006. Available online: http://www.precisioninfo.com/rivers_org/au/library/nrhp/diatoms_indicators (accessed on 12 February 2019).
55.
Kaštovský J, Hauer T, Komárek J, Skacelova O. The list of cyanobacterial species of the Czech Republic to the end of 2009.
Fottea 2010,
10, 245–249.
[Google Scholar]
56.
Kharitonov VG. On the study of diatoms of fresh water bodies of the Chukotka Peninsula. In Flora and Vegetation of Chukotka; Far Eastern Scientific Center of the USSR Academy of Sciences: Vladivostok, Russia, 1978; pp. 118–121.
57.
Kharitonov VG. Diatoms of the benthos of water bodies of Wrangel Island.
News Taxon. Low. Plants 1981,
18, 33–39.
[Google Scholar]
58.
Kharitonov VG. Сompendium of the Flora of Diatoms (Bacillariophyceae) of the Northern Sea of Okhotsk; North-East Scientific Center, Far Eastern Branch of the Russian Academy of Sciences: Magadan, Russia, 2010; 189p.
59.
Khursevich GK, Loginova LP. Fossil Diatom Flora of Belarus; Science and Technology: Minsk, Belarus, 1980; 122p.
60.
Khursevich GK. History of the Development of the Diatom Flora of the Lakes of the Naroch Basin; Science and Technology: Minsk, Belarus, 1976; 152p.
61.
Komárek J, Anagnostidis K. Cyanoprokaryota. 1. Chroococcales. In Süßwasserflora von Mitteleuropa. Begründet von A. Pascher. Band 19/1; Ettl H, Gärtner G, Heynig H, Mollenhauer D, Eds.; Spektrum, Akademischer Verlag: Berlin/Heidelberg, Germany, 1999; pp. 1–548.
62.
Komárek J, Fott B. Chlorophyceae (Grünalgen) Ordnung: Chlorococcales. Das Phytoplankton des Süsswassers. In Das Phytoplankton des Süsswassers (Die Binnengewässer) XVI. 7. Teil 1. Hälfte; Huber-Pestalozzi G, Ed.; E. Schweizerbart’sche Verlangbuchhandlung (Nägele u. Obermiller): Stuttgart, Germany, 1983; pp. 1–1044.
63.
Komárek J, Anagnostidis KC. Teil 2. Oscillatoriales. In Süßwasserflora von Mitteleuropa 19/2; Büdel B, Gärtner G, Krienitz L, Schagerl M, Eds.; Spektrum Akademische Verlag, Elsevier GmbH: Berlin, Germany, 2005; 759p.
64.
Kossinskaya EK. Conjugates, or couplings (2). Mesothenian and gonatozygous algae. In Flora of Spore Plants of the USSR; Publishing House of the Academy of Sciences of the USSR: Moscow, Russia; Saint Petersburg, Russia, 1952; Volume 2, 165p.
65.
Kossinskaya EK. Desmid algae. Conjugates, or couplings (2). In Flora of Spore Plants of the USSR; Publishing House of the Academy of Sciences of the USSR: Moscow, Russia; Saint Petersburg, Russia, 1960; Volume 5, 706p.
66.
Kovács C, Kahlert M, Padisák J. Benthic diatom communities along pH and TP gradients in Hungarian and Swedish streams.
J. Appl. Phycol. 2006,
18, 105–117.
[Google Scholar]
67.
Krammer K. The
Gibberula-Group in the genus
Rhopalodia (Bacillariopyceae). II. Revision of the group and new taxa.
Nova Hedwig. 1988,
47, 159–205.
[Google Scholar]
68.
Krammer K, Lange-Bertalot H. Bacillariophyceae. 1. Naviculaceae. Süßwasserflora von Mitteleuropa 2/1; G. Fischer: Jena, Germany; Stuttgart, Germany; Lübeck, Germany; Ulm, Germany, 1991; 876p.
69.
Krammer K, Lange-Bertalot H. Bacillariophyceae. 2. Bacillariaceae, Epithemiaceae, Surirellaceae. Süßwasserflora von Mitteleuropa 2/2; G. Fischer: Jena, Germany; Stuttgart, Germany; Lübeck, Germany; Ulm, Germany, 1991; 611p.
70.
Krause W. Charales (Charophyceae). Süßwasserflora von Mitteleuropa 18; G. Fischer: Jena, Germany; Stuttgart, Germany; Lübeck, Germany; Ulm, Germany, 1997; 202p.
71.
Kuzmin GV. Species Composition of Phytoplankton in Reservoirs of the Flood Zone of the Kolyma Hydroelectric Power Station. Periprint; Institute of Biological Problems of the North, Far Eastern Polytechnical University, USSR Academy of Sciences: Magadan, Russia, 1985; 41p.
72.
Lenzenweger R. Desmidiaceenflora von Österreich, Teil 4. In Bibliotheca Phycologica; Cramer J, Ed.; Gebrüder Borntraeger Verlagsbuchhandlung: Berlin, Germany; Stuttgart, Germany, 2003; Volume 111, 87p.
73.
Levadnaya GD. Microphytobenthos of the Yenisei River; Nauka: Novosibirsk, Russia, 1986; 288p.
74.
Licursi M, Gómez N, Donadelli J. Ecological optima and tolerances of coastal benthic diatoms in the freshwater-mixohaline zone of the Río de la Plata estuary.
Mar. Ecol. Prog. Ser. 2010,
418, 105–117.
[Google Scholar]
75.
Lobo EA, Schuch M, Heinrich CG, Da Costa AB, Düpont A, Wetzel CE, et al. Development of the Trophic Water Quality Index (TWQI) for subtropical temperate Brazilian lotic systems.
Environ. Monit. Assess. 2015,
187, 354.
[Google Scholar]
76.
Loseva EI. Atlas of Late Pliocene Diatoms of the Kama Region; Nauka: Saint Petersburg, Russia, 1982; 204p.
77.
Marvan P, Maršálek B, Heteša J, Sukačova K, Maršálková E, Geriš R, et al. Comments on the Revised Tables of Algal (and Other Botanical) Water Quality Indicators Listed in CSN 75 7716—Discussion Material for Assessment of Trophic Status of Water Bodies; Association Flos Aquae: Upper Klamath Lake, OR, USA, 2005. Available online: www.cyanobacteria.net (accessed on 6 May 2005).
78.
Marvan P, Heteša J, Hindák F, Hindakowa A. Phytoplankton of the Morava River in the Czech Republic and Slovakia: past and present.
Oceanol. Hydrobiol. Stud. 2004,
33, 41–60.
[Google Scholar]
79.
Matvienko AM. Key to Freshwater Algae of the USSR. Issue. 3. Golden Algae; Soviet Science: Moscow, Russia, 1954; 189p.
80.
Meriläinen J. The diathom flora and the hydrogen-ion concentration of the water.
Ann. Bot. Fennici 1967,
4, 51–58.
[Google Scholar]
81.
Meriläinen J. The Diatoms of the meromictic Lake Valkiajärvi, in the Finish Lake District.
Ann. Bot. Fennici 1969,
6, 77–104.
[Google Scholar]
82.
Michelutti N, Smol JP, Douglas MS. Ecological characteristics of modern diatom assemblages from Axel Heiberg Island (High Arctic Canada) and their application to paleolimnological inference models.
Botany 2006,
84, 1695–1713.
[Google Scholar]
83.
Moshkova IA, Gollerbakh MM. Green Algae. Class Ulothrix (1); Guide to freshwater algae of the USSR, Issue 10; Nauka: Saint Petersburg, Russia, 1986; 360p.
84.
Nagengast B, Kuczyńska-Kippen N. Macrophyte biometric features as an indicator of the trophic status of small water bodies.
Oceanol. Hydrobiol. Stud. 2015,
44, 38–50. doi:10.1515/ohs-2015-0005.
[Google Scholar]
85.
Nevo E, Wasser SP. (Eds.) Biodiversity of Cyanoprocaryotes, Algae and Fungi of Israel: Cyanoprocaryotes and Algae of Continental ISRAEL; A.R.G. Gantner Verlag: Ruggell, Leichtenstein, 2000; 629р.
86.
Oliva-Martínez MG, Ramírez-Martínez JG, Garduño-Solórzano G, Cañetas-Ortega J, Ortega MM. Caracterización diatomológica en tres cuerpos de agua de los humedales de Jilotepec-Ixtlahuaca, Estado de México.
Hidrobiológica 2005,
15, 01–26.
[Google Scholar]
87.
Pienitz R, Lortie G, Allard M. Isolation of lacustrine basins and marine regression in the Kuujjuaq area, northern Québec, as inferred from diatom analysis.
Géographie Phys. Quat. 1991,
45, 155–174.
[Google Scholar]
88.
Popova TG. Euglenophytes; Guide of freshwater algae of the USSR, Issue 7; Soviet Science: Moscow, Russia, 1955; 282p.
89.
Porter SD. Algal Attributes: An Autecological Classification of Algal Taxa Collected by the National Water-Quality Assessment Program; US Geological Survey: Reston, VA, USA, 2008. Available online: http://pubs.usgs.gov/ds/ds329/ (accessed on 10.02.2019).
90.
Potapova M. Relationships of Soft-Bodied Algae to Water-Quality and Habitat Characteristics in US Rivers: Analysis of the National Water-Quality Assessment (NAWQA) Program Data Set; The Academy of Natural Sciences of Philadelphia, Patrick Center for Environmental Research: Philadelphia, PA, USA, 2005; pp. 05–08.
91.
Prescott GW. Algae of the Western Great Lakes area. In With an Illustrated Key to the Genera of Desmids and Freshwater Diatoms, 2nd ed.; Wm. C. Brown Company Publishers: Dubuque, Iowa, 1962; 977p.
92.
Proshkina-Lavrenko AI. Diatoms—indicators of water salinity. In Diatom Compendium; Proshkina-Lavrenko AI, Sheshukova VS, Eds.; Publishing House of Leningrad University: Saint Petersburg, Russia, 1953; Volume 1, pp. 186–205.
93.
Proshkina-Lavrenko AI. (Ed.) Diatomovyi Analiz. Opredelitel’ iskopaemykh i sovremennykh diatomikh vodorosleyi. Poryadok Pennales; Diatom Analysis. Manual for identification of fossil and modern diatoms. Order Pennales; Gosudarstvennoye Izdatel’stvo Geologicheskoy Literatury: Moscow, Russia; Saint Petersburg, Russia, 1950; Volume 3, 398p. (In Russian)
94.
Reavie E, Smol J. Diatom-environmental relationships in 64 alkaline southeastern Ontario (Canada) lakes: a diatom-based model for water quality reconstructions.
J. Paleolimnol. 2001,
25, 25–42.
[Google Scholar]
95.
Ricard M. Les peuplements de diatomées des lagons de l’archipel de la Société (Polynésie française), Floristique, Ecologie, Structure des peuplements, contribution à la production primaire; Thèse du Muséum nationale d’Histoire naturelle soutenue le 17 juin 1977. N° d’enregistrement au CNRS A.O. 12394; CNRS A.O.: Paris, France, 1977; 229p.
96.
Rimet F, Ector L, Hoffmann L. Ecology of Epilithic Diatoms in the Rivers of Luxembourg; Centre de Recherche Gabriel Lippmann: Luxembourg, 2005; 186p.
97.
Ryabushko LI, Lishaev DN, Kovrigina NP. Species Diversity of Epilithon Diatoms and the Quality of the Waters of the Donuzlav Gulf Ecosystem (Crimea, the Black Sea).
Diversity 2019,
11, 114.
[Google Scholar]
98.
Silva AMD, Ludwig TAV, Tremarin PI, Vercellino IS. Diatomáceas perifíticas em um sistema eutrófico brasileiro (Reservatório do Iraí, estado do Paraná).
Acta Bot. Bras. 2010,
24, 997–1016.
[Google Scholar]
99.
Simonsen R. Untersuchungen zur Systematik und Ökologie der Bodendiatomeen der westlichen Ostsee. In Internationale Revue der gesamten Hydrobiologie. Systematische Beihefte; Akademie-Verlag: Berlin, Germany, 1962; Volume 1; pp. 1–144.
100.
Skabichevskaya NA. Middle-late Quaternary diatoms of the Yenisei North. In Proceedings of the Institute of Geology and Geophysics, Issue 544; Nauka: Moscow, Russia, 1984; 158p.
101.
Sládeček V. Diatoms as indicators of organic pollution.
Acta Hydrochem. Hydrobiol. 1986,
14, 555–566.
[Google Scholar]
102.
Šťastný J. Desmids (Conjugatophyceae, Viridiplantae) from the Czech Republic; new and rare taxa, distribution, ecology.
Fottea 2010,
10, 1–74.
[Google Scholar]
103.
Tavassi M, Barinova SS, Anissimova OV, Nevo E, Wasser SP. Algal indicators of the environment in the Nahal Yarqon Basin, Central Israel.
Int. J. Algae 2004,
6, 355–382.
[Google Scholar]
104.
Ter Braak CJ, Van Dam H. Inferring pH from diatoms: a comparison of old and new calibration methods.
Hydrobiologia 1989,
178, 209–223.
[Google Scholar]
105.
Van Dam H, Mertens A, Sinkeldam J. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands.
Netherland J. Aquat. Ecol. 1994,
28, 117–133.
[Google Scholar]
106.
Vasilyeva II, Remigailo PA. Algae of the Vilyui Reservoir; USSR Academy of Sciences, Siberian Branch, Institute of Biology (Yakutsk): Yakutsk, Soviet Union, 1982; 115p.
107.
Vetrova ZI. Colorless Euglenophytes of Ukraine; Naukova Dumka: Kyiv, Ukraine, 1980; 184p.
108.
Vetrova ZI. Flora of Algae of Continental Water Bodies of the Ukrainian SSR. Euglenophyte Algae. 1(1); Naukova Dumka: Kyiv, Ukraine, 1986; 348p.
109.
Vetrova ZI. Flora of Algae of Continental Water Bodies of Ukraine. Euglenophyte Algae, 1(2); Naukova Dumka: Kyiv, Ukraine, 1993; 260p.
110.
Wasser SP, Kondratieva NV, Masyuk NP, Palamar-Mordvintseva GM, Vetrova ZI, Kordyum EL, et al. Algae. Guide; Naukova Dumka: Kyiv, Ukraine, 1989; 608p.
111.
Watanabe T. Tolerant diatoms to inorganic acid and alkaline lakes and some evolutionary considerations.
Diatom 1985,
1, 21–31.
[Google Scholar]
112.
Watanabe T, Asai K, Houki A, Tanaka S, Hizuka T. Saprophilous and Eurysaprobic Diatom Taxa to Organic Water Pollution and Diatom Assemblage Index (DAIpo).
Diatom 1986,
2, 23–73.
[Google Scholar]
113.
Weckström J, Korhola A, Blom T. Diatoms as quantitative indicators of pH and water temperature in subarctic Fennoscandian lakes.
Hydrobiologia 1997,
347, 171–184.
[Google Scholar]
114.
Wilson SE, Cumming BF, Smol JP. Assessing the reliability of salinity inference models from diatom assemblages: an examination of a 219-lake data set from western North America.
Can. J. Fish. Aquat. Sci. 1996,
53, 1580–1594. doi:10.1139/f96-094.
[Google Scholar]
115.
Wilson SE, Cumming BF, Smol JP. Diatom-salinity relationships in 111 lakes from the Interior Plateau of British Columbia, Canada: The development of diatom-based models for paleosalinity reconstructions.
J. Paleolimnol. 1994,
12, 197–221.
[Google Scholar]
116.
Zabelina MM, Kiselev IA, Proshkina-Lavrenko AI, Sheshukova VS. Diatoms. Key to Freshwater Algae of the USSR (4); Soviet Science: Moscow, Russia, 1951; 619p.
117.
Ziemann H. Veränderungen der Diatomeenflora der Werra unter dem Einfluß des Salzgehaltes.
Acta Hydrochim. Hydrobiol. 1991,
19, 159–174.
[Google Scholar]
118.
Tsarenko PM, Wasser SP, Nevo E. (Eds.) Algae of Ukraine: Diversity, Nomenclature, Taxonomy, Ecology and Geography. Volume 3: Chlorophyta; A.R.A. Gantner Verlag K.-G: Ruggell, Ruggell, 2006.
119.
Korshikov AA. Viznachnik Prisnovodnihk Vodorostey Ukrainsykoi RSR [Vyp] V. Pidklas Protokokovi (Protococcineae). Bakuol’ni (Vacuolales) ta Protokokovi (Protococcales); The Freshwater Algae of the Ukrainian SSR. V. Sub-Class Protococcineae. Vacuolales and Protococcales; Akad. NAUK URSR: Kyjv, Ukraine, 1953; pp. 1–439.
120.
Palamar-Mordvintseva GM. Green Algae, Class Conjugates. Order Desmidiales (2). Chlorophyta: Conjugatophyceae. Desmidiales (2); Guide of freshwater algae of the USSR, Vol. 11 (2); Nauka: Saint Petersburg, Russia, 1982; 620p.
121.
Ettl H. Xanthophyceae. Teil 1. Süßwasserflora von Mitteleuropa 3; G. Fischer: Stuttgart, Germany; New York, NY, USA, 1978; 530p.
122.
Ettl H, Gartner G. Chlorophyta II. Tetrasporales, Chlorococcales, Gloeodendrales. Süßwasserflora von Mitteleuropa 10; G. Fischer: Stuttgart, Germany; New York, NY, USA, 1988; 436p.
123.
Starmach K. Euglenophyta—Eugleniny. Flora Slodkowodna Polski, 3; Państwowe Widawnichtwo Naukowe: Warszawa, Poland; Kraków, Poland, 1983; 594p.
124.
Asai K. Statistic classification of epilithic diatom species into three ecological groups relating to organic water pollution. (1) Method with coexistence index.
Diatom. 1995,
10, 11–32.
[Google Scholar]
125.
Asai K, Watanabe T. Statistic classification of epilithic diatom species into three ecological groups relating to organic water pollution. (2) Saprophilous and saproxenous taxa.
Diatom. 1995,
10, 35–52.
[Google Scholar]
126.
Houki A. Seasonal changes of epilithic diatom assemblage and water quality chart based on DAIpo (Diatom assemblage index to organic water pollution) of the River Ina-gawa, Hyogo and Osaka Prefecture.
Diatom. 1986,
2, 133–151. (In Japanese)
[Google Scholar]
127.
Kamijo H, Watanabe T. A biological study on the pollution of the Sai-gawa River and its tributaries, Ishikawa Prefecture.
Jpn. J. Limnol. 1975,
36, 16–22. (In Japanese)
[Google Scholar]
128.
Sumita M. A numerical water quality assessment of rivers in Hokuriku District using epilithic diatom assemblage in river bed as a biological indicator. (II) The values of RPID in surveyed rivers.
Diatom. 1986,
2, 9–18.
[Google Scholar]
129.
Sumita M. A study on the organic water pollution of rivers in Hokuriku District based on the analysis of species components of epilithic diatom assemblages (I).
Diatom. 1990,
5, 91–109. (In Japanese)
[Google Scholar]
130.
Sumita M. A study on the organic water pollution of rivers in Hokuriku District based on the analysis of species components of epilithic diatom assemblages (II).
Diatom. 1990,
8, 19–34. (In Japanese)
[Google Scholar]
131.
Sumita M, Watanabe T. New general estimation of river pollution using new diatom community index (NDCI) as biological indicators based on specific composition of epilithic diatom communities—applied to Asano-gawa and Sai-gawa Rivers in Ishikawa Prefecture.
Jpn. J. Limnol. 1983,
44, 329–340.
[Google Scholar]
132.
Sumita M, Watanabe T. A Numerical Assessment of Organic Water Pollution in the River Shimanto and Its Tributaries, Kochi Prefecture, using Attached Diatom Assemblages.
Jpn. J. Limnol. 1995,
56, 137–144.
[Google Scholar]
133.
Sumita M, Watanabe T. Attached Diatom Assemblages in Springs in the Alluvial Fan of the River Kurobe, Toyama Prefecture.
Diatom. 1995,
11, 65–71. (In Japanese)
[Google Scholar]
134.
Tsuda M, Akagi I, Watanabe T. On the biotic index of water pollution based upon the species number of macroscopic animals.
Jpn. J. Ecol. 1960,
10, 198–201. (In Japanese)
[Google Scholar]
135.
Watanabe T. On the biotic index of water pollution based upon the species number of Bacillariophyceae in the Tokoro River in Hokkaido.
Jpn. J. Ecol. 1962,
12, 216–222.
[Google Scholar]
136.
Watanabe T. A new approach to water quality estimation using the specific composition of the benthic diatoms in epilithic forms based on the discuss to several problems on indicator organisms.
Environ. Poll. Control. 1981,
17, 13–18.
[Google Scholar]
137.
Watanabe T. The epilithic diatom community on the river bed of the Takase River and the plancton of dammed lakes in it’s river system. In Takase-Gawa Ryuiki Shizen Sohgoh Tsuiseki Chohsa Houkokusyo (Report on the Follow Up Survey of Takase River Drainage Basin); Numata M, Ed.; Ohmachi-shi: Nagano, Japan, 1981, pp. 175–202. (In Japanese)
138.
Watanabe T. Biological indicator for the assessment of organic water pollution.
Jpn. J. Water Pollut. Res. 1986,
19, 7–11. (In Japanese)
[Google Scholar]
139.
Watanabe T. Attached diatoms in Lake Mashuu and its value of the diatom assemblage index of organic water pollution (DAIpo).
Diatom. 1990,
5, 21–31.
[Google Scholar]
140.
Watanabe T. Studies on the quantitative water quality estimation on freshwater pollution using diatom communities as the biological indicator (1).
Ann. Rep. Nissan Sci. Found 1983,
10, 336–341. (In Japanese)
[Google Scholar]
141.
Watanabe T. Studies on the quantitative water quality estimation on freshwater pollution using diatom communities as the biological indicator (2).
Ann. Rep. Nissan Sci. Found 1984,
11, 308–317. (In Japanese)
[Google Scholar]
142.
Watanabe T, Asai K. Numerical simulation using diatom assemblage of organic pollution in streams and lakes.
Rev. Inq. Res. 1990,
52, 99–139. (In Japanese)
[Google Scholar]
143.
Watanabe T, Asai K. Simulation of Organic Water Pollution using Highly Prevailing Diatom Taxa (1). Diatom assemblage in which the leading taxon belongs to
Achnanthes,
Anomoeoneis,
Aulacoseira or
Melosira.
Diatom. 1992,
7, 13–19.
[Google Scholar]
144.
Watanabe T, Asai K. Simulation of Organic Water Pollution using Highly Prevailing Diatom Taxa (2). Diatom assemblage in which the leading taxon belongs to
Caloneis,
Cocconeis,
Cyclotella,
Cymbella,
Diatoma,
Eunotia,
Fragilaria,
Gomphoneis or
Gomphonema.
Diatom. 1992,
7, 21–27.
[Google Scholar]
145.
Watanabe T, Asai K. Simulation of Organic Water Pollution using Highly Prevailing Diatom Taxa (3). Diatom assemblage in which the leading taxon belongs to
Navicula.
Diatom. 1992,
7, 29–35.
[Google Scholar]
146.
Watanabe T, Asai K. Simulation of Organic Water Pollution using Highly Prevailing Diatom Taxa (4). Diatom assemblage in which the leading taxon belongs to
Nitzschia,
Pinnularia,
Surirella or
Synedra.
Diatom. 1992,
7, 37–43.
[Google Scholar]
147.
Watanabe T, Asai K. Numerical Estimation of Organic Pollution Based on the Attached Diatom Assemblage in Lake Biwa and its Inflows. In Proceedings of the 11th International Diatom Symposium, Maratea, Italy, 1–7 September 1994; pp. 567–581.
148.
Watanabe T, Asai K, Houki A. Biological Information Closely Related to the Numerical Index DAIpo (Diatom Assemblage Index to Organic Water Pollution).
Diatom. 1988,
4, 49–60.
[Google Scholar]
149.
Watanabe T, Asai K, Houki A. Epilithic diatom assemblage to organic water pollution (DAIpo) and its ecological significance. Annual Report of Graduate Division of Human Culture.
Dr. Degree Program Nara Women’s Univ. 1985,
1, 76–94.
[Google Scholar]
150.
Watanabe T, Asai K, Houki A. Numerical estimation to organic pollution of flowing water by using the epilithic diatom assemblage—Diatom Assemblage Index (DAIpo).
Sci. Total Environ. 1986,
55, 209–218.
[Google Scholar]
151.
Watanabe T, Asai K, Houki A. Numerical water quality monitoring of organic pollution using diatom assemblage in flowing waters.
Kansai Shizenhogokyokai-Ho 1986,
13, 31–48. (In Japanese)
[Google Scholar]
152.
Watanabe T, Asai K, Houki A. Numerical index of water quality using diatom assemblages. In Biological Monitoring of Environmental Pollution; Yasuno M, Whitton A, Eds.; Tokai Univ. Press: Tokyo, Japan, 1988; pp. 179–192.
153.
Watanabe T, Asai K, Houki A. Numerical water quality monitoring of organic pollution using diatom assemblages. In Proceedings of the 9th International Diatom Symposium, Bristol, UK, 24–30 August 1986; Koeltz Scientific Books: Koenigstein, Germany, 1988; pp. 123–141.
154.
Watanabe T, Asai K, Houki A. Numerical simulation of organic pollution in flowing waters. In Encyclopedia Environmental Control Technology. V. 4. Hazardous Waste: Containment and Treatment; Cheremisinoff PN, Ed.; Gulf Publishing Co.: Houston, TX, USA, 1990; pp. 252–281.
155.
Watanabe T, Asai K, Houki A, Sumita M. Numerical simulation of organic pollution based on the attached diatom assemblage in Lake Biwa (1).
Diatom. 1990,
5, 9–20.
[Google Scholar]
156.
Watanabe T, Asai K, Yamada T. The change of organic pollution degree of lotic waters according by construction of the dammed lake. In Symposium report on effects of artificial modification of the river environment of living organisms.
Jpn. J. Limnol. 1989,
50, 69–70.
[Google Scholar]
157.
Watanabe T, Hizuka T, Tanaka S. Water quality chart of the River Yamato-gawa—Using diatom assemblage index to organic water pollution (DAIpo) based on attached diatom assemblage on river bed.
Diatom. 1986,
2, 125–131. (In Japanese)
[Google Scholar]
158.
Watanabe T, Kanechika M. Application of DAIpo (Diatom Assemblage Index to Organic Water Pollution) to Lentic Environment to the Muroo Reservoir in Nara Prefecture.
Diatom. 1986,
2, 153–162. (In Japanese)
[Google Scholar]
159.
Watanabe T, Suzuki N. Effect of substrata on flora of attached diatom assemblage with reference to biological water quality assessment.
Jpn. J. Phycol. 1989,
50, 129–137.
[Google Scholar]
160.
Watanabe T, Tanaka S, Hizuka T. Water quality chart of the River Kinokawa—Using diatom assemblage index to organic water pollution (DAIpo) based on attached diatom assemblage on river bed.
Diatom. 1986,
2, 117–124. (In Japanese)
[Google Scholar]
161.
Watanabe T, Tomatsu N. Seasonal change of epilithic diatom assemblages and water pollution chart in River Saho passing through the Nara City.
Water Purif. Liq. Wastes Treat. 1987,
28, 7–17. (In Japanese)
[Google Scholar]
162.
Watanabe T, Touhei M, Kadotani H. Tolerant and indifferent diatom taxa to organic water pollution. In Report of Special Research Project of Environmental Science B121-R12-10; Watanabe T, Ed.; Ministry of Education, Science and Culture of Japan: Tokyo, Japan, 1981; pp. 48–73. (In Japanese)
163.
Watanabe T, Touhei M, Kadotani H. A new method of Water Quality Monitoring Using Epilithic Diatom Assemblage to Organic Water Pollution in Running Water. In Report of Special Research Project of Environmental Science B21-R12-10; Watanabe T, Ed.; Ministry of Education, Science and Culture of Japan: Tokyo, Japan, 1982; pp. 45–47. (In Japanese)
164.
Watanabe T, Yamada T, Asai K. Application of diatom assemblage index to organic water pollution DAIpo to standing waters.
Suicicu Odacu Kan Kju 1988,
11, 765–773. (In Japanese)
[Google Scholar]
165.
Anonymous. Unified Methods of Studying Water. Saprobic Indicators, 3; CMEA Publishing House: Moscow, Russia, 1977; 42p.
166.
Makrushin AV. Bioindication of Pollution of Inland Water Bodies. Biological Methods of Assessing the Natural Environment; Nauka: Moscow, Russia, 1978; pp. 127–137.
167.
Hustedt F. Systematische und ökologische Untersuchungen über die Diatomeen-Flora von Java, Bali und Sumatra nach dem Material der Deutschen Limnologischen Sunda-Expedition.
Arch. für Hydrobiol. 1937,
Supplement 15, 187–295.
[Google Scholar]
168.
Hustedt F. Systematische and ökologische Untersuchungen über die Diatomeen-Flora von Java, Bali und Sumatra nach dem Material der Deutschen Limnologischen Sunda-Expedition.
Arch. für Hydrobiol. 1939,
Supplement 16, 1–155, 274–394.
[Google Scholar]
169.
Kolbe R. Zur Ökologie, Morpholoqie und Sistematik der Brackwasser Diatomeen.
Pflanzenforschung 1927,
7, 1–146.
[Google Scholar]
170.
Hustedt F. Die Diatomeenflora des Flüßsystems der Weser im Gebiet der Hansestadt Bremen.
Abhandl Naturwiss Ver Brem 1957,
34, 181–440.
[Google Scholar]
171.
Stoermer EF, Smol JP. (Eds.) The Diatoms: Applications for the Environmental and Earth Sciences; Cambridge Univ. Press: Cambridge, MA, USA, 2001; 469p.
172.
Ehrlich A. Atlas of the Inland-Water Diatom Flora of Israel; The Israel Academy of Sciences and Humanities: Jerusalem, Israel, 1995; 217р.
173.
Kolkwitz R, Marsson M. Grundsätze für die biologische Beurteilung des Wassers nach seiner Flora und Fauna.
Mitt. kgl. PrüFanstalt Wasserversorg. Abwasserbeseit. 1902,
1, 33–72.
[Google Scholar]
174.
Sládeček V. System of water quality from the biological point of view.
Arch. Hydrobiol. 1973,
7, 1–218.
[Google Scholar]
175.
De Pauw N, Hawkes HA. Biological monitoring of river water quality. In River Water Quality Monitoring and Control; Walley WJ, Judd S, Eds.; Aston University Press: Birmingham, UK, 1993; pp. 87–111.
176.
Friedrich G, Chapman D, Beim A. The use of biological material. In Water Quality Assessment—A Guide to the Use of Biota Sediment and Water in Environment Monitoring; Chapman DV, Ed.; E and Fn Spon: London, UK, 1996; pp. 175–242.
177.
Barinova S. On the Classification of Water Quality from an Ecological Point of View.
Int. J. Environ. Sci. Nat. Resour. 2017,
2, 1–8. doi:10.19080/IJESNR.2017.02.555581.
[Google Scholar]
178.
Barinova S. How to Align and Unify the Cell Counting of Organisms for Bioindication.
Int. J. Environ. Sci. Nat. Resour. 2017,
2, 555585. doi:10.19080/IJESNR.2017.02.555585.
[Google Scholar]
179.
Dell’Uomo A. Use of algae for monitoring rivers in Italy: Current situation and perspectives. In Use of Algae for Monitoring Rivers III; Prygiel J, Whitton BA, Buckowska J, Eds.; Agence de I’Eau Artois-Picardie Press: Douai Cedex, France, 1999; pp. 165–179.
180.
Protasov A, Barinova S, Novoselova T, Sylaieva A. The Aquatic Organisms Diversity, Community Structure, and Environmental Conditions.
Diversity 2019,
11, 190–207. doi:10.3390/d11100190.
[Google Scholar]
181.
Barinova S, Smith T. Algae Diversity and Ecology during a Summer Assessment of Water Quality in the Abraham Lincoln Birthplace National Historical Park, USA.
Diversity 2019,
11, 206. doi:10.3390/d11110206.
[Google Scholar]
182.
Krupa E, Barinova S, Romanova S. Ecological Mapping in Assessing the Impact of Environmental Factors on the Aquatic Ecosystem of the Arys River Basin, South Kazakhstan.
Diversity 2019,
11, 239; doi:10.3390/d11120239.
[Google Scholar]
183.
Barinova S, Mamanazarova K. Diatom Algae-Indicators of Water Quality in the Lower Zarafshan River, Uzbekistan.
Water 2021,
13, 358. doi:10.3390/w13030358.
[Google Scholar]
184.
Barinova S, Gabyshev V, Genkal S, Gabysheva O. Diatoms’ Diversity in the Assessment of the Impact of Diamond and Oil and Gas Mining on Aquatic Ecosystems of the Central Yakut Plain (Eastern Siberia, Yakutia) Using Bioindication and Statistical Mapping Methods.
Diversity 2024,
16, 440. doi:10.3390/d16080440.
[Google Scholar]
185.
Barinova S, Gabyshev V, Genkal S, Gabysheva O. Diatoms of Small Water Bodies as Bioindicators in the Assessment of Climatic and Anthropogenic Impacts on the Coast of Tiksi Bay, Russian Arctic.
Water 2023,
15, 1533. doi:10.3390/w15081533.
[Google Scholar]
186.
Barinova S, Gabyshev V, Genkal S. Diversity of Diatom Algae in the Lena Delta Nature Reserve and the Adjacent Territory in the Specific Ecological Factors of the Arctic.
Diversity 2023,
15, 802. doi:10.3390/d15070802.
[Google Scholar]