Refractory high-entropy alloys (RHEAs) show promising properties for applications as structural materials in high-temperature applications, such as high solidus temperature and high strength. Improving their density, oxidation resistance, and room temperature ductility are still the aims of research in alloy development. In this study, Al-rich diffusion coatings by pack cementation are developed for three different alloys in the system Al-Cr-Mo-Ta-Ti in order to improve their high-temperature oxidation resistance. Equimolar AlCrMoTaTi, Al-rich Al3CrMoTaTi, and Ti-rich AlCrMoTaTi3 are synthesized by vacuum arc melting with subsequent milling to powder, consolidation to bulk material by field-assisted sintering technology/spark plasma sintering (FAST/SPS), and homogenization heat treatment. The applied aluminizing coatings are investigated by gravimetry, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). Experimental analyses are supplemented by CALPHAD simulations. Compact, uniform, and adhesive Al-rich diffusion coatings are produced on all three substrate RHEAs and exhibit single-layered D022 Al3(Cr,Mo,Ta,Ti) intermetallic compound analogous to Al3Ti in the binary Al-Ti system. Isothermal oxidation at 1000 °C for 48 h in ambient air results in the formation of 1–2 µm thin protective single-layered alumina scale—in contrast to multi-layered oxide scales in uncoated condition—and mass gains as low as binary Al3Ti and Ni-based superalloys.
A2B2O7 complex oxides have a great potential to be used in high-temperature catalytic processes. Herein, a series of A2B2O7 (A = La, Nd, Sm, Gd, Er, Yb; B = Ti, Sn, Zr, Ce) compounds with all four kinds of typical sub-crystalline phases were synthesized to study their bulk and surface properties. FTIR spectroscopy was adopted as a novel method in this study to identify distinctively these phases. Whereas, it cannot be used to distinguish the subtle structure difference between disordered and ordered pyrochlores, nor that between the disordered defect fluorite and the rare earth. To discriminate these exquisite phase differences, XPS spectra must be supplementarily used. Specifically, it was discovered that the coordination numbers of the A- and B-site cations are the key factor affecting their binding energies. Furthermore, the electronegativity of the A- and B-site elements significantly influences the binding energy of surface lattice oxygen, reflecting their electrophilic and nucleophilic properties, which can thus be used to effectively identify the sub-crystalline phase. The oxygen vacancy concentration of different sub-crystalline phases is the primary factor controlling the amount of surface chemisorbed oxygen species on A2B2O7 compounds, with superoxide anions (O2−) identified as the major species.