Sort by

Found 197 results

Article

11 January 2024

Plant Proteins Availability in Europe and Asia: A Causality Analysis of Climate, Demographics, and Economic Factors

The article examines the availability of plant-based proteins in Europe and Asia, considering the challenges posed by climate, demographics, and economics. The availability of these proteins is crucial given the growing impact of climate, economic, and social variables. Indeed, these factors play a decisive role in the production and accessibility of plant-based proteins across countries. The study employed a causality analysis method using regression models to determine the relative impact of these factors on protein availability. Two indicators were prioritized: total national production and the daily accessible quantity per person. This approach made it possible to construct hypothetical trajectories, showcasing the interrelations between the different variables. The results show that the availability of plant-based proteins varies across regions. Factors such as rising temperatures, increasing pollutants, and rising prices of plant proteins are particularly concerning. In this context, legumes appear as a promising alternative. They offer resilience against climatic variations while being an excellent protein source. The findings also encourage rethinking our consumption. Meat, with its significant ecological footprint, should see its consumption decrease in favor of plant-based proteins, ensuring a more sustainable diet. To facilitate this transition, the importance of appropriate public policies and incentives for producing and consuming plant proteins is emphasized.

Keywords: Plant-based proteins; Climate change; Vegetables; Sustainable consumption; Public policies

Article

09 January 2024

Climate Change Adaptation Strategies for Grape Cultivation in Yamanashi Prefecture of Japan

Climate change impacts agricultural production, especially fruits. Amongst fruits, the grape is economically valuable and highly affected by climate change. Therefore, climate adaptation strategies are essential in overcoming the detrimental effects of climate change on grape cultivation. The study summarises adaptation strategies for grape cultivation in general and focuses on climate change. The Yamanashi prefecture in Japan is taken for the case study. Our findings indicate a decline in grape production in Japan and Yamanashi prefecture. This is attributed to the effects of climate change. Following this, various support measures (adaptative, mitigation, others) provided by the Yamanashi government towards grape cultivation are summarised and analyzed. The study concludes by offering recommendations by drawing lessons from the literature review on adaptation strategies for grape cultivation, focusing on overcoming climate change impact in the context of Yamanashi prefecture.

Keywords: Sustainability; Local production; Innovation; SMEs; Food tech; Japan

Perspective

05 January 2024

The Future of Artificial Intelligence Will Be “Next to Normal”—A Perspective on Future Directions and the Psychology of AI Safety Concerns

This paper introduces the AI “next to normal”-thesis, suggesting that as Artificial Intelligence becomes more ingrained in our daily lives, it will transition from a sensationalized entity to a regular tool. However, this normalization has psychosocial implications, particularly when it comes to AI safety concerns. The “next to normal”-thesis proposes that AI will soon be perceived as a standard component of our technological interactions, with its sensationalized nature diminishing over time. As AI’s integration becomes more seamless, many users may not even recognize their interactions with AI systems. The paper delves into the psychology of AI safety concerns, discussing the “Mere Exposure Effect” and the “Black Box Effect”. While the former suggests that increased exposure to AI leads to a more positive perception, the latter highlights the unease stemming from not fully understanding its capabilities. These effects can be seen as two opposing forces shaping the public’s perception of the technology. The central claim of the thesis is that as AI progresses to become normal, human psychology will evolve alongside with it and safety concerns will diminish, which may have practical consequences. The paper concludes by discussing the implications of the “next to normal”-thesis and offers recommendations for the industry and policymakers, emphasizing the need for increased transparency, continuous education, robust regulation, and empirical research. The future of AI is envisioned as one that is seamlessly integrated into society, yet it is imperative to address the associated safety concerns proactively and not take the normalization effects take ahold of it.

Keywords: AI; Artificial intelligence; Mere exposure effect; Black box effect; AI safety concerns; Technological developments

Article

05 January 2024

Benzene Bridged Carbon Nitride for Efficient Photocatalytic Hydrogen Evolution

Turing the electronic structure by inserting certain functional groups in graphitic carbon nitride (g-C3N4, CN for short) skeleton through molecular doping is an effective way to improve its photocatalytic performance. Herein, we prepare a benzene bridged carbon nitride (BCN) by calcining urea and 1,3,5-tribromobenzene at elevated temperature. The introduction of benzene ring in g-C3N4 layers improves the separation efficiency and lifetime of photogenerated carriers, inhibits the recombination rate of electron/hole pairs, thus the performance of photocatalytic hydrogen evolution improves. The optimal hydrogen evolution rate of 1.5BCN reaches 1800 µmol/h·g, which is nine times that of the pure g-C3N4. DFT calculation proved the benzene bridged CN increased the distance of charge transfer (DCT) and the push-pull electronic effect of intramolecular electrons. This work may provide a pathway for preparing molecular doped g-C3N4 with improved photocatalytic performance.

Keywords: Graphitic carbon nitride; Photocatalysis; Hydrogen evolution; Photocatalysts; Molecular design

Editorial

02 January 2024

Editorial

30 November 2023

Article

27 November 2023

Enhancing the Monitoring Protocols of Intermittent Flow Rivers with UAV-Based Optical Methods to Estimate the River Flow and Evaluate Their Environmental Status

Temporary streams are a key component of the hydrological cycle in arid and semi-arid regions, but their flow is highly variable and difficult to measure. In this paper, we present a novel approach that could be used to assess the flow of temporary streams this allowing to characterize their environmental status. Specifically, we apply the Image Velocimetry (IV) method to estimate surface velocity in temporary streams using Unmanned Aerial Vehicles (UAVs) equipped with optical sensors (IV-UAV method). The IV-UAV method enables the easy, safe and quick estimation of the velocity on the water’s surface. This method was applied in different temporary streams in Lesvos Island, Greece. The results obtained indicate that the IV-UAV can be implemented at low discharges, temporary streams and small streams. Specifically, the water depth ranged from 0.02 m to 0.28 m, while the channel width ranged from 0.6 m to 4.0 m. The estimated surface velocity ranged from 0.0 to 5.5 m/s; thus, the maximum water discharge was 0.60 m3/s for the largest monitored stream of the island. However, there were many occasions that measurements were unable due to various reasons such as dense vegetation or archaeological sites. Despite of this, the proposed methodology could be incorporated in optical protocols which are used to assess the environmental status of temporary streams of Mediterranean conditions. Finally, this would become a valuable tool for understanding the dynamics of these ecosystems and monitoring changes over time.

Keywords: Environmental flow; Intermittent flow; Mediterranean conditions; Optical protocol; Surface velocity; Temporary streams; Unmanned aerial vehicles

Article

15 November 2023

Local Production, Consumption, and Innovation: Enhancing Sustainability through SMEs in Japan

The study focuses on the process of business development with the use of food tech and open innovation by Small and Medium-sized Enterprises (SMEs) in Japan to create a sustainable ecosystem in the regional economy. Production of alternative food materials is introduced in the new business of SMEs with the hope to reduce carbon footprint. SMEs need to create an SME ecosystem that integrates consumers as vital partners in the process of introducing new alternative food items to the market as agents of change. Innovative ways of inventing new food products involve the processes of sourcing ingredients, creating new recipes for alternative food products, and incorporating local food culture and methods of food preparation. Therefore, it is crucial for SMEs to involve local producers as well as consumers as stakeholders in innovation. Some case examples of SMEs producing plant-based alternative meats in Japan are reviewed in this study to highlight key factors impacting the outcome of innovation in the products and processes of SMEs seeking sustainable solutions. The significance of the study lies in acknowledging catalytic roles of SMEs in regional settings and interactive roles of consumers as product buyers as well as active players who consciously opt for certain products and modes of consumption driven by their inclination to support sustainability. Based on the findings of the study, some policy suggestions are also made for enhancing sustainability and revitalizing the local economy through SMEs. 

Keywords: Sustainability; Local Production; Innovation; SMEs; Food Tech; Japan

Editorial

08 November 2023

Review

08 November 2023

Review on Drone-Assisted Air-Quality Monitoring Systems

Drone-aided systems have gained popularity in the last few decades due to their stability in various commercial sectors and military applications. The conventional ambient air quality monitoring stations (AAQMS) are immovable and big. This drawback has been significantly overcome by drone-aided low-cost sensor (LCS) modules. As a result, much research work, media information, and technical notes have been released on drone-aided air quality and ecological monitoring and mapping applications. This work is a sincere effort to provide a comprehensive and structured review of commercial drone applications for air quality and environmental monitoring. The collected scientific and non-scientific information was divided according to the different drone models, sensor types, and payload weights. The payload component is very critical in stablility of the multirotor drones. Most study projects installed inexpensive sensors on drones according to the avilibility of the space on drone frame. After reviewing of multiple environmental applications the common payload range was 0 gm to 4000 gm. The crucial elements are addressed, including their relation to meteorological factors, air isokinetics, propeller-induced downwash, sensor mounting location, ramifications etc. As a result, technical recommendations for AQ monitoring assisted by drones are addressed in the debate part. This work will help researchers and environmentalists choose sensor-specific payloads for drones and mounting locations. Also, it enables advanced methods of monitoring parameters that help policymakers to frame advanced protocols and sensor databases for the environment and ecology.

Keywords: Drones; Air quality; Ecology and environment; Sensors
TOP