Article Open Access

Benzene Bridged Carbon Nitride for Efficient Photocatalytic Hydrogen Evolution

Photocatalysis: Research and Potential. 2024, 1(1), 10001;
Junxia Chu †,    Wencheng Li †,    Xin Bai    Xi Rao *    Shaohui Zheng *    Yongping Zhang *   
School of Materials and Energy, Southwest University, Chongqing 400715, China
These authors contributed equally to this work.
Authors to whom correspondence should be addressed.

Received: 23 Nov 2023    Accepted: 01 Jan 2024    Published: 05 Jan 2024   


Turing the electronic structure by inserting certain functional groups in graphitic carbon nitride (g-C3N4, CN for short) skeleton through molecular doping is an effective way to improve its photocatalytic performance. Herein, we prepare a benzene bridged carbon nitride (BCN) by calcining urea and 1,3,5-tribromobenzene at elevated temperature. The introduction of benzene ring in g-C3N4 layers improves the separation efficiency and lifetime of photogenerated carriers, inhibits the recombination rate of electron/hole pairs, thus the performance of photocatalytic hydrogen evolution improves. The optimal hydrogen evolution rate of 1.5BCN reaches 1800 µmol/h·g, which is nine times that of the pure g-C3N4. DFT calculation proved the benzene bridged CN increased the distance of charge transfer (DCT) and the push-pull electronic effect of intramolecular electrons. This work may provide a pathway for preparing molecular doped g-C3N4 with improved photocatalytic performance.


Zhang Y, Yuan S, Feng X, Li H, Zhou J, Wang B. Preparation of Nanofibrous Metal-Organic Framework Filters for Efficient Air Pollution Control. J. Am. Chem. Soc. 2016, 138, 5785–5788. [Google Scholar]
Guo L, Niu Y, Razzaque S, Tan B, Jin S. Design of D–A1–A2 Covalent Triazine Frameworks via Copolymerization for Photocatalytic Hydrogen Evolution. ACS Catal. 2019, 9, 9438–9445. [Google Scholar]
Wang B, Wang X, Lu L, Zhou C, Xin Z, Wang J, et al. Oxygen-Vacancy-Activated CO2 Splitting over Amorphous Oxide Semiconductor Photocatalyst. ACS Catal. 2017, 8, 516–525. [Google Scholar]
Li B, Fang Q, Si Y, Huang T, Huang WQ, Hu W, et al. Ultra-thin tubular graphitic carbon Nitride-Carbon Dot lateral heterostructures: One-Step synthesis and highly efficient catalytic hydrogen generation. Chem. Eng. J. 2020, 397, 125479. [Google Scholar]
Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2008, 8, 76–80. [Google Scholar]
Zhao S, Fang J, Wang Y, Zhang Y, Zhou Y, Zhuo S. Construction of three-dimensional mesoporous carbon nitride with high surface area for efficient visible-light-driven hydrogen evolution. J. Colloid Interface Sci. 2020, 561, 601–608. [Google Scholar]
Cheng C, Mao L, Huang Z, Shi J, Zheng B, Zhang Y, et al. Bridging regulation in graphitic carbon nitride for band-structure modulation and directional charge transfer towards efficient H2 evolution under visible-light irradiation. J. Colloid Interface Sci. 2021, 601, 220–228. [Google Scholar]
Zhang Y, Huang Z, Dong CL, Shi J, Cheng C, Guan X, et al. Synergistic effect of nitrogen vacancy on ultrathin graphitic carbon nitride porous nanosheets for highly efficient photocatalytic H2 evolution. Chem. Eng. J. 2022, 431, 134101. [Google Scholar]
Zhang Y, Huang Z, Shi J, Guan X, Cheng C, Zong S, et al. Maleic hydrazide-based molecule doping in three-dimensional lettuce-like graphite carbon nitride towards highly efficient photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2020, 272, 119009. [Google Scholar]
Sun N, Liang Y, Ma X, Chen F. Reduced Oxygenated g-C3N4 with Abundant Nitrogen Vacancies for Visible-Light Photocatalytic Applications. Chemistry 2017, 23, 15466–15473. [Google Scholar]
Han Q, Wang B, Gao J, Cheng Z, Zhao Y, Zhang Z, et al. Atomically Thin Mesoporous Nanomesh of Graphitic C3N4 for High-Efficiency Photocatalytic Hydrogen Evolution. ACS Nano 2016, 10, 2745–2751. [Google Scholar]
Fan K, Jin Z, Yang H, Liu D, Hu H, Bi Y. Promotion of the excited electron transfer over Ni- and Co-sulfide co-doped g-C3N4 photocatalyst (g-C3N4/NixCo1-xS2) for hydrogen Production under visible light irradiation. Sci. Rep. 2017, 7, 7710. [Google Scholar]
Fao GD, Jiang JC. Theoretical investigation of CO2 conversion on corrugated g-C3N4 surface decorated by single-atom of Fe, Co, and Pd. Mol. Catal. 2022, 526, 112402. [Google Scholar]
Guo S, Deng Z, Li M, Jiang B, Tian C, Pan Q, et al. Phosphorus-Doped Carbon Nitride Tubes with a Layered Micro-nanostructure for Enhanced Visible-Light Photocatalytic Hydrogen Evolution. Angew. Chem. Int. Ed. 2016, 55, 1830–1834. [Google Scholar]
Qin J, Wang S, Ren H, Hou Y, Wang X. Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid. Appl. Catal. B Environ. 2015, 179, 1–8. [Google Scholar]
Zhang J, Chen X, Takanabe K, Maeda K, Domen K, Epping JD, et al. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew. Chem. Int. Ed. 2010, 49, 441–444. [Google Scholar]
Bellamkonda S, Shanmugam R, Gangavarapu R. Extending the π-electron conjugation in 2D planar graphitic carbon nitride: Efficient charge separation for overall water splitting. J. Mater. Chem. A 2019, 7, 3757–3771. [Google Scholar]
Li Y, Wang S, Chang W, Zhang L, Wu Z, Jin R, et al. Co-monomer engineering optimized electron delocalization system in carbon-bridging modified g-C3N4 nanosheets with efficient visible-light photocatalytic performance. Appl. Cataly. B Environ. 2020, 274, 119116. [Google Scholar]
Chu YC, Lin TJ, Lin YR, Chiu WL, Nguyen BS, Hu C. Influence of P,S,O-Doping on g-C3N4 for hydrogel formation and photocatalysis: An experimental and theoretical study. Carbon 2020, 169, 338–348. [Google Scholar]
Guo F, Shi W, Li M, Shi Y, Wen H. 2D/2D Z-scheme heterojunction of CuInS2/g-C3N4 for enhanced visible-light-driven photocatalytic activity towards the degradation of tetracycline. Sep. Purif. Technol. 2019, 210, 608–615. [Google Scholar]
Yang J, Liang Y, Li K, Yang G, Wang K, Xu R, et al. Cyano and potassium-rich g-C3N4 hollow tubes for efficient visible-light-driven hydrogen evolution. Catal. Sci. Technol. 2019, 9, 3342–3346. [Google Scholar]
Li Y, Zhang D, Fan J, Xiang Q. Highly crystalline carbon nitride hollow spheres with enhanced photocatalytic performance. Chin. J. Catal. 2021, 42, 627–636. [Google Scholar]
Hong X, Liu Y, Fu J, Wang X, Zhang T, Wang S, et al. A wheat flour derived hierarchical porous carbon/graphitic carbon nitride composite for high-performance lithium–sulfur batteries. Carbon 2020, 170, 119–126. [Google Scholar]
Yin JT, Li Z, Cai Y, Zhang QF, Chen W. Ultrathin graphitic carbon nitride nanosheets with remarkable photocatalytic hydrogen production under visible LED irradiation. Chem. Commun. 2017, 53, 9430–9433. [Google Scholar]
Liu M, Zhang G, Liang X, Pan Z, Zheng D, Wang S, et al. Rh/Cr2O3 and CoOx cocatalysts for efficient photocatalystic water splitting by poly(triazine imide) crystals. Angew. Chem. Int. Ed. 2023, 62, e202304694. [Google Scholar]
Zhang J, Ye G, Zhang C, Pan Z, Wang S, Zhang G, et al. Heptazine-based ordered-disordered copolymers with enhanced visible-light absorption for photocatalytic hydrogen production. ChemSusChem 2022, 15, e202201616. [Google Scholar]
Chang M, Pan Z, Zheng D, Wang S, Zhang G, Anpo M, et al. Salt-melt synthesis of poly heptazine imide with enhanced optical absorption for photocatalytic hydrogen production. ChemSusChem 2023, 16, e202202255. [Google Scholar]
Wang Q, Zhang G, Xing W, Pan Z, Zheng D, Wang S, et al. Bottom-up synthesis of single-crystalline poly (triazine imide) nanosheets for photocatalytic overall water splitting. Angew. Chem. Int. Ed. 2023, 62, e202307930. [Google Scholar]
Lin Y, Wang L, Yu Y, Zhang X, Yang Y, Guo W, et al. Construction of molecularly doped and cyano defects co-modified graphitic carbon nitride for the efficient photocatalytic degradation of tetracycline hydrochloride. New J. Chem. 2021, 45, 18598–18608. [Google Scholar]
Heymann L, Bittinger SC, Klinke C. Molecular Doping of Electrochemically Prepared Triazine-Based Carbon Nitride by 2,4,6-Triaminopyrimidine for Improved Photocatalytic Properties. ACS Omega 2018, 3, 17042–17048. [Google Scholar]
Gong X, Yu S, Guan M, Zhu X, Xue C. Pyrene-functionalized polymeric carbon nitride with promoted aqueous–organic biphasic photocatalytic CO2 reduction. J. Mater. Chem. A 2019, 7, 7373–7379. [Google Scholar]
Su FY, Zhang WD. Carbonyl-Grafted g-C3N4 Porous Nanosheets for Efficient Photocatalytic Hydrogen Evolution. Chem.-Asian J. 2017, 12, 515–523. [Google Scholar]
Zhang J, Zhang G, Chen X, Lin S, Mohlmann L, Dolega G, et al. Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light. Angew. Chem. Int. Ed. 2012, 51, 3183–3187. [Google Scholar]
Yu Y, Yan W, Gao W, Li P, Wang X, Wu S, et al. Aromatic ring substituted g-C3N4 for enhanced photocatalytic hydrogen evolution. J. Mater. Chem. A 2017, 5, 17199–17203. [Google Scholar]
Lin X, Hou X, Cui L, Zhao S, Bi H, Du H, et al. Increasing π-electron availability in benzene ring incorporated graphitic carbon nitride for increased photocatalytic hydrogen generation. J. Mater. Sci. Technol. 2021, 65, 164–170. [Google Scholar]
Chen Y, Qu Y, Zhou X, Li D, Xu P, Sun J. Phenyl-bridged graphitic carbon nitride with a porous and hollow sphere structure to enhance dissiciation of photogenerated charge carriers and visible-light-driven H2 generation. ACS Appl. Mater. Interfaces 2020, 12, 41527–41537. [Google Scholar]
Yuan H, Bai J, Xu B, Li X, Xiao S, Liu P, et al. Graphitic carbon nitride doped with a benzene ring for enhanced photocatalytic H2 evolution. Chem. Commun. 2021, 57, 3042–3045. [Google Scholar]
Chen P, Lei B, Dong X, Wang H, Sheng J, Cui W, et al. Rare-Earth Single-Atom La-N Charge-Transfer Bridge on Carbon Nitride for Highly Efficient and Selective Photocatalytic CO2 Reduction. ACS Nano 2020, 14, 15841–15852. [Google Scholar]
Chen L, Man Y, Chen Z, Zhang Y. Ag/g-C3N4 layered composites with enhanced visible light photocatalytic performance. Mater. Res. Express 2016, 3, 115003. [Google Scholar]
Gao D, Liu Y, Liu P, Si M, Xue D. Atomically Thin B doped g-C3N4 Nanosheets: High-Temperature Ferromagnetism and calculated Half-Metallicity. Sci. Rep. 2016, 6, 35768. [Google Scholar]
Wang X, Chen X, Thomas A, Fu X, Antonietti M. Metal-Containing Carbon Nitride Compounds: A New Functional Organic-Metal Hybrid Material. Adv. Mater. 2009, 21, 1609–1612. [Google Scholar]
Fang J, Fan H, Li M, Long C. Nitrogen self-doped graphitic carbon nitride as efficient visible light photocatalyst for hydrogen evolution. J. Mater. Chem. A 2015, 3, 13819–13826. [Google Scholar]
Bledowski M, Wang L, Ramakrishnan A, Khavryuchenko OV, Khavryuchenko VD, Ricci PC, et al. Visible-light photocurrent response of TiO2-polyheptazine hybrids: evidence for interfacial charge-transfer absorption. Phys. Chem. Chem. Phys. 2011, 13, 21511–21519. [Google Scholar]
Li J, Shen B, Hong Z, Lin B, Gao B, Chen Y. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem. Commun. 2012, 48, 12017–12019. [Google Scholar]
Liang Q, Li Z, Bai Y, Huang ZH, Kang F, Yang QH. A Composite Polymeric Carbon Nitride with In Situ Formed Isotype Heterojunctions for Highly Improved Photocatalysis under Visible Light. Small 2017, 13, 1603182. [Google Scholar]
Li L, Yan J, Wang T, Zhao ZJ, Zhang J, Gong J, et al. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat. Commun. 2015, 6, 5881. [Google Scholar]
Yao C, Yuan A, Wang Z, Lei H, Zhang L, Guo L, et al. Amphiphilic two-dimensional graphitic carbon nitride nanosheets for visible-light-driven phase-boundary photocatalysis. J. Mater. Chem. A 2019, 7, 13071–13079. [Google Scholar]
Kim H, Gim S, Jeon TH, Kim H, Choi W. Distorted Carbon Nitride Structure with Substituted Benzene Moieties for Enhanced Visible Light Photocatalytic Activities. ACS Appl. Mater. Interfaces 2017, 9, 40360–40368. [Google Scholar]
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09, Revision E.01; Gaussian, Inc.: Wallingford, CT, USA, 2013.
Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar]
Lu T. Simple, reliable, and universal metrics of molecular planarity. J. Mol. Model. 2021, 27, 263. [Google Scholar]
Creative Commons

© 2024 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (