Article Open Access

Time-efficient and Semi-automated Production and Screening of Proteins

Synthetic Biology and Engineering. 2023, 1(3), 10016; https://doi.org/10.35534/sbe.2023.10016
S. R. Sekar 1    S. Ilhan 1    Uwe Jandt 1    An-Ping Zeng 1,2 *   
1
Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestr. 15, Hamburg 21073, Germany
2
Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou 310024, China
*
Authors to whom correspondence should be addressed.

Received: 20 Nov 2023    Accepted: 13 Dec 2023    Published: 18 Dec 2023   

Abstract

Fast, flexible and non-randomized modification, production and screening of proteins in fully automated system are of high interest in biological research and applications. The conventional methods for protein engineering and screening, especially for mutations of multiple residues. are time consuming and often unreliable. We demonstrate here a new, fast and flexible protein production and screening method which combines linear expression template (LET) based cell free protein synthesis (CFPS) with specific screening methods. This approach is demonstrated using green fluorescence protein, phosphoserine aminotransferase (serC) and aspartokinase III (AKIII) as model systems. The results show that mutants with changes in different protein properties upon multiple point mutations can be produced and screened within 6 to 15 h. This method can be used further to generate mutants of enzymes and multi-enzyme complexes and be implemented within the workflow of a feedback-guided protein optimization and screening system.

References

1.
Hoover DM, Lubkowski J. DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis.  Nucleic Acids Res. 2002, 30, e43. [Google Scholar]
2.
Gao X, LeProust E, Zhang H, Srivannavit O, Gulari E, Yu P, et al. A flexible light-directed DNA chip synthesis gated by deprotection using solution photogenerated acids.  Nucleic Acids Res. 2001, 29, 4744–4450. [Google Scholar]
3.
Rouillard JM, Lee W, Truan G, Gao X, Zhou X, Gulari E. Gene2Oligo: oligonucleotide design for in vitro gene synthesis.  Nucleic Acids Res. 2004, 32, W176–W180. [Google Scholar]
4.
Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, Yansura DG, Crea R, et al. Expression in Escherichia coli of chemically synthesized genes for human insulin.  Proc. Natl. Acad. Sci. USA 1979, 76, 106–110. [Google Scholar]
5.
Mandecki W, Boiling TJ. FokI method of gene synthesis.  Gene 1988, 68, 101–107. [Google Scholar]
6.
Crameri A, Stemmer WC. Combinatorial multiple cassette mutagenesis creates all the permutations of mutant and wild-type sequences.  BioTechniques 1995, 18, 194–196. [Google Scholar]
7.
Dillon PJ, Rosen CA. A rapid method for the construction of synthetic genes using the polymerase chain reaction.  BioTechniques 1990, 9, 298–300. [Google Scholar]
8.
Takahashi MK, Hayes CA, Chappell J, Sun ZZ, Murray RM, Noireaux V, et al. Characterizing and prototyping genetic networks with cell-free transcription–translation reactions.  Methods 2015, 86, 60–72. [Google Scholar]
9.
Noireaux V, Bar-Ziv R, Libchaber A. Principles of cell-free genetic circuit assembly.  Proc. Natl. Acad. Sci. USA 2003, 100, 12672–12677. [Google Scholar]
10.
Katzen F, Chang G, Kudlicki W. The past, present and future of cell-free protein synthesis.  Trends Biotechnol. 2005, 23, 150–156. [Google Scholar]
11.
Kigawa T, Yabuki T, Yoshida Y, Tsutsui M, Ito Y, Shibata T, et al. Cell‐free production and stable‐isotope labeling of milligram quantities of proteins.  FEBS Lett. 1999, 442, 15–19. [Google Scholar]
12.
Kim DM, Swartz JR. Regeneration of adenosine triphosphate from glycolytic intermediates for cell‐free protein synthesis.  Biotechnol. Bioeng. 2001, 74, 309–316. [Google Scholar]
13.
Terada T, Kusano S, Matsuda T, Shirouzu M, Yokoyama S. Cell-Free Protein Production for Structural Biology. In Advanced Methods in Structural Biology; Springer: Tokyo, Japan, 2016, pp. 83–102.
14.
Carlson ED, Gan R, Hodgman CE, Jewett MC. Cell-free protein synthesis: applications come of age.  Biotechnol. Adv. 2012, 30, 1185–1194. [Google Scholar]
15.
Shinoda T, Shinya N, Ito K, Ishizuka-Katsura Y, Ohsawa N, Terada T, et al. Cell-free methods to produce structurally intact mammalian membrane proteins.  Sci. Rep. 2016, 6, 30442. [Google Scholar]
16.
Stadtman ER, Cohen GN, LeBras G, de Robichon-Szulmajster H. Feed-back inhibition and repression of aspartokinase activity in Escherichia coli and Saccharomyces cerevisiae J. Biol. Chem. 1961, 236, 2033–2038. [Google Scholar]
17.
Adachi J, Katsura K, Seki E, Takemoto C, Shirouzu M, Terada T, et al. Cell-free protein synthesis using S30 extracts from Escherichia coli RFzero strains for efficient incorporation of non-natural amino acids into proteins.  Int. J. Mol. Sci. 2019, 20, 492. [Google Scholar]
18.
Kigawa T, Yabuki T, Matsuda N, Matsuda T, Nakajima R, Tanaka A, et al. Preparation of Escherichia coli cell extract for highly productive cell-free protein expression.  J. Struct. Funct. Genom. 2004, 5, 63–68. [Google Scholar]
19.
Yaginuma H, Kawai S, Tabata KV, Tomiyama K, Kakizuka A, Komatsuzaki T, et al. Diversity in ATP concentrations in a single bacterial cell population revealed by quantitative single-cell imaging.  Sci. Rep. 2014, 4, 6522. [Google Scholar]
20.
Black S, Wright NG. β-Aspartokinase and β-aspartyl phosphate.  J. Biol. Chem. 1955, 213, 27–38. [Google Scholar]
21.
Chen Z, Rappert S, Sun J, Zeng AP. Integrating molecular dynamics and co-evolutionary analysis for reliable target prediction and deregulation of the allosteric inhibition of aspartokinase for amino acid production.  J. Biotechnol. 2011, 154, 248–254. [Google Scholar]
22.
Wurm M, Ilhan S, Jandt U, Zeng AP. Direct and highly sensitive measurement of fluorescent molecules in bulk solutions using flow cytometry.  Anal. Biochem. 2019, 570, 32–42. [Google Scholar]
23.
Walton CJ, Chica RA. A high-throughput assay for screening L-or D-amino acid specific aminotransferase mutant libraries.  Anal. Biochem. 2013, 441, 190–198. [Google Scholar]
24.
Seki E, Matsuda N, Yokoyama S, Kigawa T. Cell-free protein synthesis system from Escherichia coli cells cultured at decreased temperatures improves productivity by decreasing DNA template degradation.  Anal. Biochem. 2008, 377, 156–161. [Google Scholar]
25.
Kikuchi Y, Kojima H, Tanaka T. Mutational analysis of the feedback sites of lysine-sensitive aspartokinase of Escherichia coli FEMS Microbiol. Lett. 1999, 173, 211–215. [Google Scholar]
26.
Zhang Y, Ma C, Dischert W, Soucaille P, Zeng A-P. Engineering of phosphoserine aminotransferase for L-homoserine conversion to 4-hydroxy-2-ketobutyrate in a glycerol-independent pathway of 1,3-propanediol production from glucose.  Biotechnol. J. 2019, 14, 1900003. [Google Scholar]
27.
Walther T, Topham CM, Irague R, Auriol C, Baylac A, Cordier H, et al. Construction of a synthetic metabolic pathway for biosynthesis of the non-natural methionine precursor 2,4-dihydroxybutyric acid.  Nat. Commun. 2017, 8, 15828. [Google Scholar]
Creative Commons

© 2024 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (https://creativecommons.org/licenses/by/4.0/).