Article Open Access

Serine Integrase-based Recombination Enables Direct Plasmid Assembly In Vivo

Synthetic Biology and Engineering. 2023, 1(3), 10017; https://doi.org/10.35534/sbe.2023.10017
Luyao Wang    Yufei Zhang    Wan-Qiu Liu    Fang Ba *    Jian Li *   
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
*
Authors to whom correspondence should be addressed.

Received: 20 Nov 2023    Accepted: 19 Dec 2023    Published: 20 Dec 2023   

Abstract

Serine integrases are emerging as one of the powerful tools for synthetic biology. They have been widely developed across genome engineering, biological part construction, genetic circuit design, and in vitro DNA assembly. However, the strategy of in vivo DNA assembly by serine integrases has not yet been reported. To address this opportunity, here we developed a serine integrase-based in vivo DNA (plasmid) assembly approach. First, we demonstrated that the engineered “Acceptor” plasmids could be assembled with diverse “Donor” plasmids by serine integrases (Bxb1 and phiC31) in Escherichia coli (E. coli). Then, by programming the “Donor” plasmids and the host E. coli cells, we established an assembly cascade procedure and finally constructed plasmids that could constitutively express three different fluorescent proteins. Moreover, we used this approach to assemble different chromoprotein genes and generated colored E. coli cells. We anticipate that this approach will enrich the serine integrase-based biotechnology toolbox, and accelerate multiple plasmid assembly for synthetic biology with broad applications.

References

1.
Sheth RU, Wang HH. DNA-based memory devices for recording cellular events.  Nat. Rev. Genet. 2018, 19, 718–732. [Google Scholar]
2.
Cameron DE, Bashor CJ, Collins JJ. A brief history of synthetic biology.  Nat. Rev. Microbiol. 2014, 12, 381–390. [Google Scholar]
3.
Meng F, Ellis T.  The second decade of synthetic biology: 2010–2020.  Nat. Commun. 2020, 11, 5174. [Google Scholar]
4.
Grindley NDF, Whiteson KL, Rice PA. Mechanisms of site-specific recombination.  Ann. Rev. Biochem. 2006, 75, 567–605. [Google Scholar]
5.
Ba F, Zhang Y, Wang L, Liu WQ, Li J. Applications of serine integrases in synthetic biology over the past decade.  SynBio 2023, 1, 172–189. [Google Scholar]
6.
Merrick CA, Zhao J, Rosser SJ. Serine integrases: Advancing synthetic biology.  ACS Synth. Biol. 2018, 7, 299–310. [Google Scholar]
7.
Stark WM. Making serine integrases work for us. Curr. Opin. Microbiol. 2017, 38, 130–136. [Google Scholar]
8.
Durrant MG, Fanton A, Tycko J, Hinks M, Chandrasekaran SS, Perry NT, et al. Systematic discovery of recombinases for efficient integration of large DNA sequences into the human genome.  Nat. Biotechnol. 2023, 41, 488–499. [Google Scholar]
9.
Snoeck N, De Mol ML, Van Herpe D, Goormans A, Maryns I, Coussement P, et al. Serine integrase recombinational engineering (SIRE): A versatile toolbox for genome editing.  Biotechnol. Bioeng. 2019, 116, 364–374. [Google Scholar]
10.
Elmore JR, Dexter GN, Baldino H, Huenemann JD, Francis R, Peabody V GL, et al. High-throughput genetic engineering of nonmodel and undomesticated bacteria via iterative site-specific genome integration.  Sci. Adv. 2023, 9, eade1285. [Google Scholar]
11.
Ba F, Liu Y, Liu WQ, Tian X, Li J. SYMBIOSIS: synthetic manipulable biobricks via orthogonal serine integrase systems.  Nucleic Acids Res. 2022, 50, 2973–2985. [Google Scholar]
12.
Siuti P, Yazbek J, Lu TK. Synthetic circuits integrating logic and memory in living cells.  Nat. Biotechnol. 2013, 31, 448–452. [Google Scholar]
13.
Weinberg BH, Pham NTH, Caraballo LD, Lozanoski T, Engel A, Bhatia S, et al. Large-scale design of robust genetic circuits with multiple inputs and outputs for mammalian cells.  Nat. Biotechnol. 2017, 35, 453–462. [Google Scholar]
14.
Roquet N, Soleimany AP, Ferris AC, Aaronson S, Lu TK. Synthetic recombinase-based state machines in living cells.  Science 2016, 353, aad8559. [Google Scholar]
15.
Hsiao V, Hori Y, Rothemund PW, Murry RM. A population-based temporal logic gate for timing and recording chemical events.  Mol. Syst. Biol. 2016, 12, 869. [Google Scholar]
16.
Yang L, Nielsen AAK, Fernandez-Rodriguez J, McClune CJ, Laub MT, Lu TK, et al. Permanent genetic memory with >1-byte capacity.  Nat. Methods 2014, 11, 1261–1266. [Google Scholar]
17.
Abioye J, Lawson-Williams M, Lecanda A, Calhoon B, McQue AL, Colloms SD, et al. High fidelity one-pot DNA assembly using orthogonal serine integrases.  Biotechnol. J. 2023, 18, 2200411. [Google Scholar]
18.
Gao H, Taylor G, Evans SK, Fogg PCM, Smith MCM. Application of serine integrases for secondary metabolite pathway assembly in Streptomyces. Synth. Syst. Biotechnol. 2020, 5, 111–119. [Google Scholar]
19.
Colloms SD, Merrick CA, Olorunniji FJ, Stark WM, Smith MCM, Osbourn A, et al. Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination.  Nucleic Acids Res. 2014, 42, e23. [Google Scholar]
20.
Ba F, Ji X, Huang S, Zhang Y, Liu WQ, Liu Y, et al. Engineering Escherichia coli to utilize erythritol as sole carbon source.  Adv. Sci. 2023, 10, 2207008. [Google Scholar]
21.
Ba F, Zhang Y, Ji X, Liu WQ, Ling S, Li J. Expanding the toolbox of probiotic Escherichia coli Nissle 1917 for synthetic biology. Biotechnol. J. 2023, doi:10.1002/biot.202300327.
22.
Rakowski SA, Filutowicz M. Plasmid R6K replication control.  Plasmid 2013, 69, 231–242. [Google Scholar]
23.
Peng R, Ba F, Li J, Cao J, Zhang R, Liu WQ, et al. Embedding living cells with a mechanically reinforced and functionally programmable hydrogel fiber platform.  Adv. Mater. 2023, 35, 2305583. [Google Scholar]
24.
Jung JK, Rasor BJ, Rybnicky GA, Silverman AD, Standeven J, Kuhn R, et al. At-home, cell-free synthetic biology education modules for transcriptional regulation and environmental water quality monitoring.  ACS Synth. Biol. 2023, 12, 2909–2921. [Google Scholar]
Creative Commons

© 2024 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (https://creativecommons.org/licenses/by/4.0/).