Review Open Access

Metabolic Engineering of Microorganisms Towards the Biomanufacturing of Non-Natural C5 and C6 Chemicals

Synthetic Biology and Engineering. 2023, 1(3), 10015;
Ashley Tseng ,    Vanna Nguyen ,    Yuheng Lin , *   
Biotechnology Program, Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX 77479, USA
Authors to whom correspondence should be addressed.

Received: 22 Sep 2023    Accepted: 24 Oct 2023    Published: 31 Oct 2023   


Five-carbon (C5) and six-carbon (C6) chemicals are essential components in the manufacturing of a variety of pharmaceuticals, fuels, polymers, and other materials. However, the predominant reliance on chemical synthesis methods and unsustainable feedstock sources has placed significant strain on Earth’s finite fossil resources and the environment. To address this challenge and promote sustainability, significant efforts have been undertaken to re-program microorganisms through metabolic engineering and synthetic biology approaches allowing for bio-based manufacturing of these compounds. This review provides a comprehensive overview of the advancements in microbial production of commercially significant non-natural C5 chemicals, including 1-pentanol, 1,5-pentanediol, cadaverine, δ-valerolactam, glutaric acid, glutaconic acid, and 5-hydroxyvaleric acid, as well as C6 chemicals, including cis, cis-muconic acid, adipic acid, 1,6-hexamethylenediamine, 6-aminocaproic acid, β-methyl-δ-valerolactone, 1-hexanol, ε-caprolactone, 6-hydroxyhexanoic acid, and 1,6-hexanediol.


Nakamura CE, Whited GM. Metabolic engineering for the microbial production of 1,3-propanediol.  Curr. Opin. Biotechnol. 2003, 14, 454–459. [Google Scholar]
Harmsen PFH, Hackmann MM, Bos HL. Green building blocks for bio-based plastics.  Biofuels Bioprod. Biorefin. 2014, 8, 306–324. [Google Scholar]
Eriksen D, Li S, Zhao H. Chapter 3—Pathway Engineering as an Enabling Synthetic Biology Tool. In Synthetic Biology; Elsevier Inc: Amsterdam, The Netherlands, 2013; pp. 43–61.
Laffend L, Haynie S, Emptage M, Pucci J, Whited G. Process for the biological production of 1,3-propanediol with high titer. US Patent US7504250B2.5, 2019.
Burgard A, Burk MJ, Osterhout R, Van Dien S, Yim H. Development of a commercial scale process for production of 1,4-butanediol from sugar. Curr. Opin. Biotechnol. 2016, 42, 118–125. [Google Scholar]
Isobutanol Is a Building Block for Renewable Fuels and Chemicals. Available online: (accessed on 11 August 2023).
Główka M, Krawczyk T. New Trends and Perspectives in Production of 1,2-Propanediol.  ACS Sustain. Chem. Eng. 2023, 11, 7274–7287. [Google Scholar]
Nawab S, Wang N, Ma X, Huo Y. Genetic engineering of non-native hosts for 1-butanol production and its challenges: A review.  Microbial Cell Fact. 2020, 19, 79. [Google Scholar]
Hakizimana O, Matabaro E, Lee BH. The current strategies and parameters for the enhanced microbial production of 2,3-butanediol.  Biotechnol. Rep. 2020, 25, e00397. [Google Scholar]
Hu S, Gao Q, Wang X, Yang J, Xu N, Chen K, et al. Efficient production of D-1,2,4-butanetriol from D-xylose by engineered Escherichia coli whole-cell biocatalysts.  Front. Chem. Sci. Eng. 2018, 12, 772–779. [Google Scholar]
Huang Y, Ji X, Ma Z, Łężyk M, Xue Y, Zhao H. Green chemical and biological synthesis of cadaverine: recent development and challenges.  RSC Adv. 2021, 11, 23922–23942. [Google Scholar]
Polymers Market size to grow by USD 19.3 billion from 2023 to 2030; Growing application of products in various end-use sectors. Available online: (accessed on 17 October 2023).
Thaore V, Chadwick D, Shah N. Sustainable production of chemical intermediates for nylon manufacture: A techno-economic analysis for renewable production of caprolactone.  Chem. Eng. Res. Des. 2018, 135, 140–152. [Google Scholar]
Hermann BG, Blok K, Patel MK. Producing Bio-Based Bulk Chemicals Using Industrial Biotechnology Saves Energy and Combats Climate Change.  Environ. Sci. Technol. 2007, 41, 7915–7921. [Google Scholar]
Kapar Yilmaz E, Akbayrak A, Bayraç C. An Optimization Study for Laboratory Scale Production of Glucose Syrup from Potato, Wheat and Maize Starch.  Akademik Gıda 2021, 19, 364–372. [Google Scholar]
Lima PJM, da Silva RM, Neto CACG, Gomes e Silva NC, Souza JEdS, Nunes YL, et al. An overview on the conversion of glycerol to value‐added industrial products via chemical and biochemical routes.  Biotechnol. Appl. Biochem. 2022, 69, 2794–2818. [Google Scholar]
Geno and Aquafil begin pre-commercial production for plant-based nylon-6. Available online: (accessed on 11 August 2023).
Toray Invents 100% Bio-Based Adipic Acid from Sugars Derived from Inedible Biomass, Scaling Up for Application to Eco-friendly Nylon 66: Latest News. Toray Industries, Inc. Available online: (accessed on 11 August 2023).
Chen GS, Siao SW, Shen CR. Saturated mutagenesis of ketoisovalerate decarboxylase V461 enabled specific synthesis of 1-pentanol via the ketoacid elongation cycle.  Sci. Rep. 2017, 7, 11284. [Google Scholar]
Cen X, Liu Y, Zhu F, Liu D, Chen Z. Metabolic Engineering of Escherichia coli for high production of 1,5-pentanediol via a cadaverine-derived pathway.  Metab. Eng. 2022, 74, 168–177. [Google Scholar]
Gao S, Zhang A, Ma D, Zhang K, Wang J, Wang X, et al. Enhancing pH stability of lysine decarboxylase via rational engineering and its application in cadaverine industrial production.  Biochem. Eng. J. 2022, 186, 108548. [Google Scholar]
Kwak DH, Lim HG, Yang J, Seo SW, Jung GY. Synthetic redesign of Escherichia coli for cadaverine production from galactose.  Biotechnol. Biofuels 2017, 10, 20. [Google Scholar]
Kim HT, Baritugo K, Oh YH, Hyun SM, Khang TU, Kang KH, et al. Metabolic Engineering of Corynebacterium glutamicum for the High-Level Production of Cadaverine That Can Be Used for the Synthesis of Biopolyamide 510.  ACS Sus. Chem. Eng. 2018, 6, 5296–5305. [Google Scholar]
Buschke N, Schröder H, Wittmann C. Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose.  Biotechnol. J. 2011, 6, 306–317. [Google Scholar]
Buschke N, Becker J, Schäfer R, Kiefer P, Biedendieck R, Wittmann C. Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane.  Biotechnol. J. 2013, 8, 557–570. [Google Scholar]
Cheng J, Tu W, Luo Z, Liang L, Gou X, Wang X, et al. Coproduction of 5-Aminovalerate and δ-Valerolactam for the Synthesis of Nylon 5 From L-Lysine in Escherichia coli Front. Bioeng. Biotechnol. 2021, 9, 726126. [Google Scholar]
Li W, Ma L, Shen X, Wang J, Feng Q, Liu L, et al. Targeting metabolic driving and intermediate influx in lysine catabolism for high-level glutarate production.  Nat. Comm. 2019, 10, 3337. [Google Scholar]
Wang J, Gao C, Chen X, Liu L. Engineering the Cad pathway in Escherichia coli to produce glutarate from l-lysine.  Appl. Microbiol. Biotechnol. 2021, 105, 3587–3599. [Google Scholar]
Wang J, Shen X, Lin Y, Chen Z, Yang Y, Yuan Q, et al. Investigation of the Synergetic Effect of Xylose Metabolic Pathways on the Production of Glutaric Acid. ACS Syn. Biol. 2018, 7, 24–29. [Google Scholar]
Han T, Kim GB, Lee SY. Glutaric acid production by systems metabolic engineering of an L-lysine–overproducing Corynebacterium glutamicum Proc. Natl. Acad. Sci. USA 2020, 117, 30328–30334. [Google Scholar]
Djurdjevic I, Zelder O, Buckel W. Production of Glutaconic Acid in a Recombinant Escherichia coli Strain.  Appl. Environ. Microbiol. 2011, 77, 320–322. [Google Scholar]
Sohn YJ, Kang M, Baritugo K, Son J, Kang KH, Ryu M, et al. Fermentative High-Level Production of 5-Hydroxyvaleric Acid by Metabolically Engineered Corynebacterium glutamicum ACS Sustain. Chem. Eng. 2021, 9, 2523–2533. [Google Scholar]
Chen C, Wang T, Ye P, Li N. Metabolic engineering of Escherichia coli for the efficient production of 5-hydroxyvaleric acid. Process Biochem. 2023, 130, 625–633. [Google Scholar]
Choi S, Seo S, Park S, Lee H, Song J, Kim J, et al. Cell Factory Design and Culture Process Optimization for Dehydroshikimate Biosynthesis in Escherichia coli Front. Bioeng. Biotechnol. 2019, 7, 241. [Google Scholar]
Wang G, Øzmerih S, Guerreiro R, Meireles AC, Carolas A, Milne N, et al. Improvement of cis,cis-Muconic Acid Production in Saccharomyces cerevisiae through Biosensor-Aided Genome Engineering.  ACS Syn. Biol. 2020, 9, 634–646. [Google Scholar]
Kohlstedt M, Starck S, Barton N, Stolzenberger J, Selzer M, Mehlmann K, et al. From lignin to nylon: Cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida Metab. Eng. 2018, 47, 279–293. [Google Scholar]
Becker J, Kuhl M, Kohlstedt M, Starck S, Wittmann C. Metabolic engineering of Corynebacterium glutamicum for the production of cis, cis-muconic acid from lignin.  Microbial Cell Fact. 2018, 17, 115. [Google Scholar]
Barton N, Horbal L, Starck S, Kohlstedt M, Luzhetskyy A, Wittmann C. Enabling the valorization of guaiacol-based lignin: Integrated chemical and biochemical production of cis,cis-muconic acid using metabolically engineered Amycolatopsis sp ATCC 39116.  Metab. Eng. 2018, 45, 200–210. [Google Scholar]
Zhao M, Huang D, Zhang X, Koffas MAG, Zhou J, Deng Y. Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway.  Metab. Eng. 2018, 47, 254–262. [Google Scholar]
Raj K, Partow S, Correia K, Khusnutdinova AN, Yakunin AF, Mahadevan R. Biocatalytic production of adipic acid from glucose using engineered Saccharomyces cerevisiae. Metab. Eng. Comm. 2018, 6, 28–32. [Google Scholar]
Niu W, Willett H, Mueller J, He X, Kramer L, Ma B, et al. Direct biosynthesis of adipic acid from lignin-derived aromatics using engineered Pseudomonas putida KT2440.  Metab. Eng. 2020, 59, 151–161. [Google Scholar]
Bretschneider L, Heuschkel I, Bühler K, Karande R, Bühler B. Rational orthologous pathway and biochemical process engineering for adipic acid production using Pseudomonas taiwanensis VLB120.  Metab. Eng. 2022, 70, 206–217. [Google Scholar]
Wang L, Li G, Li A, Deng Y. Directed Synthesis of Biobased 1,6-Diaminohexane from Adipic Acid by Rational Regulation of a Functional Enzyme Cascade in Escherichia coli ACS Sustain. Chem. Eng. 2023, 11, 6011–6020. [Google Scholar]
Turk SCHJ, Kloosterman WP, Ninaber DK, Kolen KPAM, Knutova J, Suir E, et al. Metabolic Engineering toward Sustainable Production of Nylon6.  ACS Syn. Biol. 2016, 5, 65–73. [Google Scholar]
Trefzer AC, De Wildeman SMA, Schurmann M, Raemakers-Franken PC. Preparation of 6-aminocaproic acid from 5-formylvaleric acid. US Patent US20220064679A1.113, 2021.
Xiong M, Schneiderman DK, Bates FS, Hillmyer MA, Zhang K. Scalable production of mechanically tunable block polymers from sugar.  Proc. Natl. Acad. Sci. USA 2014, 111, 8357–8362. [Google Scholar]
Dekishima Y, Lan EI, Shen CR, Cho KM, Liao JC. Extending Carbon Chain Length of 1-Butanol Pathway for 1-Hexanol Synthesis from Glucose by Engineered Escherichia coli J. Am. Chem. Soc. 2011, 133, 11399–11401. [Google Scholar]
Wirth S, Dürre P. Investigation of putative genes for the production of medium-chained acids and alcohols in autotrophic acetogenic bacteria.  Metab. Eng. 2021, 66, 296–307296–307. [Google Scholar]
Lauer I, Philipps G, Jennewein S. Metabolic engineering of Clostridium ljungdahlii for the production of hexanol and butanol from CO2 and H2 Microbial Cell Fact. 2022, 21, 85. [Google Scholar]
Diender M, Stams AJM, Machado de Sousa DZ. Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas.  Biotechnol. Biofuels 2016, 9, 82. [Google Scholar]
Oh HJ, Ko JK, Gong G, Lee S, Um Y. Production of Hexanol as the Main Product Through Syngas Fermentation by Clostridium carboxidivorans P7.  Front. Bioeng. Biotechnol. 2022, 10, 850370. [Google Scholar]
Hashem C, Hochrinner J, Bürgler MB, Rinnofner C, Pichler H, Winkler M. From linoleic acid to hexanal and hexanol by whole cell catalysis with a lipoxygenase, hydroperoxide lyase and reductase cascade in Komagataella phaffii Front. Mol. Biosci. 2022, 9, 965315. [Google Scholar]
Mallin H, Wulf H, Bornscheuer UT. A self-sufficient Baeyer–Villiger biocatalysis system for the synthesis of ɛ-caprolactone from cyclohexanol.  Enzyme Microbial Technol. 2013, 53, 283–287. [Google Scholar]
Srinivasamurthy VST, Böttcher D, Bornscheuer UT. A multi-enzyme cascade reaction for the production of 6-hydroxyhexanoic acid.  Zeitschrift für Naturforschung C. A J. Biosci. 2019, 74, 71–76. [Google Scholar]
Bretschneider L, Heuschkel I, Wegner M, Lindmeyer M, Bühler K, Karande R, et al. Conversion of Cyclohexane to 6-Hydroxyhexanoic Acid Using Recombinant Pseudomonas taiwanensis in a Stirred-Tank Bioreactor.  Front. Catal. 2021, 1, 683248. [Google Scholar]
Salamanca D, Bühler K, Engesser K, Schmid A, Karande R. Whole-cell biocatalysis using the Acidovorax sp. CHX100 Δ6HX for the production of ω-hydroxycarboxylic acids from cycloalkanes.  New Biotechnol. 2021, 60, 200–206. [Google Scholar]
Zhang Z, Li Q, Wang F, Li R, Yu X, Kang L, et al. One-pot biosynthesis of 1,6-hexanediol from cyclohexane by de novo designed cascade biocatalysis.  Green Chem. 2020, 22, 7476–7483. [Google Scholar]
Cann AF, Liao JC. Pentanol isomer synthesis in engineered microorganisms.  Appl. Microbiol. Biotechnol. 2010, 85, 893–899. [Google Scholar]
Zhang K, Sawaya MR, Eisenberg DS, Liao JC. Expanding metabolism for biosynthesis of nonnatural alcohols.  Proc. Natl. Acad. Sci. USA 2008, 105, 20653–20658. [Google Scholar]
Cen X, Liu Y, Chen B, Liu D, Chen Z. Metabolic Engineering of Escherichia coli for De Novo Production of 1,5-Pentanediol from Glucose.  ACS Syn. Biol. 2021, 10, 192–203. [Google Scholar]
Wang J, Li C, Zou Y, Yan Y. Bacterial synthesis of C3-C5 diols via extending amino acid catabolism.  Proc. Natl. Acad. Sci. USA 2020, 117, 19159–19167. [Google Scholar]
Hong EY, Lee S, Park BJ, Lee JM, Yun H, Kim B. Simultaneously Enhancing the Stability and Catalytic Activity of Multimeric Lysine Decarboxylase CadA by Engineering Interface Regions for Enzymatic Production of Cadaverine at High Concentration of Lysine.  Biotechnol. J. 2017, 12, 1700278. [Google Scholar]
Kou F, Zhao J, Liu J, Sun C, Guo Y, Tan Z, et al. Enhancement of the thermal and alkaline pH stability of Escherichia coli lysine decarboxylase for efficient cadaverine production.  Biotechnol. Lett. 2018, 40, 719–727. [Google Scholar]
Xi Y, Ye L, Yu H. Enhanced thermal and alkaline stability of L-lysine decarboxylase CadA by combining directed evolution and computation-guided virtual screening.  Bioresour. Bioproc. 2022, 9, 1–15. [Google Scholar]
Ma W, Cao W, Zhang H, Chen K, Li Y, Ouyang P. Enhanced cadaverine production from L-lysine using recombinant Escherichia coli co-overexpressing CadA and CadB.  Biotechnol. Lett. 2015, 37, 799–806. [Google Scholar]
Huang C, Ting W, Chen Y, Wu P, Dong C, Huang S, et al. Facilitating the enzymatic conversion of lysine to cadaverine in engineered Escherichia coli with metabolic regulation by genes deletion.  Biochem. Eng. J. 2020, 156, 107514. [Google Scholar]
Moon Y, Yang SY, Choi TR, Jung H, Song H, Han YH, et al. Enhanced production of cadaverine by the addition of hexadecyltrimethylammonium bromide to whole cell system with regeneration of pyridoxal-5′-phosphate and ATP.  Enzyme Microbial Technol. 2019, 127, 58–64. [Google Scholar]
Xue C, Hsu K, Ting W, Huang S, Lin H, Li S, et al. Efficient biotransformation of l-lysine into cadaverine by strengthening pyridoxal 5’-phosphate-dependent proteins in Escherichia coli with cold shock treatment. Biochem. Eng. J. 2020, 161, 107659. [Google Scholar]
Wang C, Zhang K, Zhongjun C, Cai H, Honggui W, Ouyang P. Directed evolution and mutagenesis of lysine decarboxylase from Hafnia alvei AS1.1009 to improve its activity toward efficient cadaverine production.  Biotechnol. Bioproc. E 2015, 20, 439–446. [Google Scholar]
Noh M, Yoo SM, Yang D, Lee SY. Broad-Spectrum Gene Repression Using Scaffold Engineering of Synthetic sRNAs.  ACS Syn. Biol. 2019, 8, 1452–1461. [Google Scholar]
Wei G, Zhang A, Lu X, He F, Li H, Xu S, et al. An environmentally friendly strategy for cadaverine bio-production: in situ utilization of CO2 self-released from L-lysine decarboxylation for pH control.  J. CO2 Utiliz. 2020, 37, 278–284. [Google Scholar]
Kind S, Neubauer S, Becker J, Yamamoto M, Völkert M, Abendroth Gv. et al. From zero to hero—Production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum Metab. Eng. 2014, 25, 113–123. [Google Scholar]
Li M, Li D, Huang Y, Liu M, Wang H, Tang Q, et al. Improving the secretion of cadaverine in Corynebacterium glutamicum by cadaverine–lysine antiporter.  J. Ind. Microbiol. Biotechnol. 2014, 41, 701–709. [Google Scholar]
Kobayashi S, Kawaguchi H, Shirai T, Ninomiya K, Takahashi K, Kondo A, et al. Automatic Redirection of Carbon Flux between Glycolysis and Pentose Phosphate Pathway Using an Oxygen-Responsive Metabolic Switch in Corynebacterium glutamicum. ACS Syn. Biol. 2020, 9, 814–826. [Google Scholar]
Imao K, Konishi R, Kishida M, Hirata Y, Segawa S, Adachi N, et al. 1,5-Diaminopentane production from xylooligosaccharides using metabolically engineered Corynebacterium glutamicum displaying beta-xylosidase on the cell surface.  Bioresour. Technol. 2017, 245, 1684–1691. [Google Scholar]
Xu Y, Zhou D, Luo R, Yang X, Wang B, Xiong X, et al. Metabolic engineering of Escherichia coli for polyamides monomer δ-valerolactam production from feedstock lysine.  Appl. Microbiol. Biotechnol. 2020, 104, 9965–9977. [Google Scholar]
Park SJ, Kim EY, Noh W, Park HM, Oh YH, Lee SH, et al. Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals.  Metab. Eng. 2013, 16, 42–47. [Google Scholar]
Adkins J, Jordan J, Nielsen DR. Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate.  Biotechnol. Bioeng. 2013, 110, 1726–1734. [Google Scholar]
Hong Y, Moon Y, Choi T, Jung H, Yang S, Ahn J, et al. Enhanced production of glutaric acid by NADH oxidase and GabD‐reinforced bioconversion from l‐lysine.  Biotechnol. Bioeng. 2019, 116, 333–341. [Google Scholar]
Hong Y, Moon Y, Hong J, No S, Choi T, Jung H, et al. Production of glutaric acid from 5-aminovaleric acid using Escherichia coli whole cell bio-catalyst overexpressing GabTD from Bacillus subtilis Enzyme Microbial Technol. 2018, 118, 57–65. [Google Scholar]
Yang S, Choi T, Jung H, Park Y, Han Y, Song H, et al. Production of glutaric acid from 5-aminovaleric acid by robust whole-cell immobilized with polyvinyl alcohol and polyethylene glycol.  Enzyme Microbial Technol. 2019, 128, 72–78. [Google Scholar]
Yang S, Choi T, Jung H, Park Y, Han Y, Song H, et al. Development of glutaric acid production consortium system with α-ketoglutaric acid regeneration by glutamate oxidase in Escherichia coli Enzyme Microbial Technol. 2020, 133, 109446. [Google Scholar]
Wang X, Su R, Chen K, Xu S, Feng J, Ouyang P. Engineering a Microbial Consortium Based Whole-Cell System for Efficient Production of Glutarate From L-Lysine.  Front. Microbiol. 2019, 10, 341. [Google Scholar]
Rohles CM, Gießelmann G, Kohlstedt M, Wittmann C, Becker J. Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate.  Microbial Cell Fact. 2016, 15, 154. [Google Scholar]
Rohles CM, Gläser L, Kohlstedt M, Gießelmann G, Pearson S, del Campo A, et al. A bio-based route to the carbon-5 chemical glutaric acid and to bionylon-6,5 using metabolically engineered Corynebacterium glutamicum. Green Chem. 2018, 20, 4662–4674. [Google Scholar]
Kim HT, Khang TU, Baritugo K, Hyun SM, Kang KH, Jung SH, et al. Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical.  Metab. Eng. 2019, 51, 99–109. [Google Scholar]
Pérez-García F, Jorge JMP, Dreyszas A, Risse JM, Wendisch VF. Efficient Production of the Dicarboxylic Acid Glutarate by Corynebacterium glutamicum via a Novel Synthetic Pathway.  Front. Microbiol. 2018, 9, 2589. [Google Scholar]
Yu J, Xia X, Zhong J, Qian Z. A novel synthetic pathway for glutarate production in recombinant Escherichia coli Proc. Biochem. 2017, 59, 167–171. [Google Scholar]
Chen C, Chen X, Liu L, Wu J, Gao C. Engineering Microorganisms to Produce Bio-Based Monomers: Progress and Challenges.  Fermentation 2023, 9, 137. [Google Scholar]
Wang J, Wu Y, Sun X, Yuan Q, Yan Y. De Novo Biosynthesis of Glutarate via αKeto Acid Carbon Chain Extension and Decarboxylation Pathway in Escherichia coli ACS Syn. Biol. 2017, 6, 1922–1930. [Google Scholar]
Zhao M, Li G, Deng Y. Engineering Escherichia coli for Glutarate Production as the C5 Platform Backbone.  Appl. Environ. Microbiol. 2018, 84, e00814-18. [Google Scholar]
Sui X, Zhao M, Liu Y, Wang J, Li G, Zhang X, et al. Enhancing glutaric acid production in Escherichia coli by uptake of malonic acid.  J. Ind. Microbiol. BioTechnol. 2020, 47, 311–318. [Google Scholar]
Sun J, Ren Y, Raza M, Sun X, Yuan Q. Microbial production of glutaconic acid via extradiol ring cleavage of catechol.  J. Chem. Technol. BioTechnol. 2018, 93, 1677–1683. [Google Scholar]
Khalil I, Quintens G, Junkers T, Dusselier M. Muconic acid isomers as platform chemicals and monomers in the biobased economy.  Green Chem. 2020, 22, 1517–1541. [Google Scholar]
Choi S, Lee H, Park E, Lee S, Kim E. Recent Advances in Microbial Production of cis,cis-Muconic Acid.  Biomolecules 2020, 10, 1238. [Google Scholar]
Draths KM, Frost JW. Environmentally compatible synthesis of adipic acid from D-glucose.  J. Am. Chem. Soc. 1994, 116, 399–400. [Google Scholar]
Niu W, Draths KM, Frost JW. Benzene-Free Synthesis of Adipic Acid.  BioTechnol. Progr. 2002, 18, 201–211. [Google Scholar]
Curran KA, Leavitt JM, Karim AS, Alper HS. Metabolic engineering of muconic acid production in Saccharomyces cerevisiae Metab. Eng. 2013, 15, 55–66. [Google Scholar]
Suastegui M, Matthiesen JE, Carraher JM, Hernandez N, Rodriguez Quiroz N, Okerlund A, et al. Titelbild: Combining Metabolic Engineering and Electrocatalysis: Application to the Production of Polyamides from Sugar.  Angewandte Chem. 2016, 128, 2317. [Google Scholar]
Leavitt JM, Wagner JM, Tu CC, Tong A, Liu Y, Alper HS. Biosensor‐Enabled Directed Evolution to Improve Muconic Acid Production in Saccharomyces cerevisiae BioTechnol. J. 2017, 12, 1600687. [Google Scholar]
Suástegui M, Yu Ng C, Chowdhury A, Sun W, Cao M, House E, et al. Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in Saccharomyces cerevisiae for high production of polymer and drug precursors.  Metab. Eng. 2017, 42, 134–144. [Google Scholar]
Liu T, Peng B, Huang S, Geng A. Recombinant xylose-fermenting yeast construction for the co-production of ethanol and cis,cis-muconic acid from lignocellulosic biomass.  Bioresour. Technol. Rep. 2020, 9, 100395. [Google Scholar]
Fujiwara R, Noda S, Tanaka T, Kondo A. Metabolic engineering of Escherichia coli for shikimate pathway derivative production from glucose–xylose co-substrate. Nat. Comm. 2020, 11, 279. [Google Scholar]
Sengupta S, Jonnalagadda S, Goonewardena L, Juturu V. Metabolic Engineering of a Novel Muconic Acid Biosynthesis Pathway via 4-Hydroxybenzoic Acid in Escherichia coli Appl. Environ. Microbiol. 2015, 81, 8037–8043. [Google Scholar]
Sun X, Lin Y, Huang Q, Yuan Q, Yan Y. A Novel Muconic Acid Biosynthesis Approach by Shunting Tryptophan Biosynthesis via Anthranilate.  Appl. Environ. Microbiol. 2013, 79, 4024–4030. [Google Scholar]
Sun X, Lin Y, Yuan Q, Yan Y. Biological Production of Muconic Acid via a Prokaryotic 2,3-Dihydroxybenzoic Acid Decarboxylase.  Chem. Sus. Chem. 2014, 7, 2478–2481. [Google Scholar]
Wang J, Zheng P. Muconic acid production from glucose using enterobactin precursors in Escherichia coli J. Ind. Microbiol. BioTechnol. 2015, 42, 701–709. [Google Scholar]
Zhang H, Li Z, Pereira B, Stephanopoulos G. Engineering E. coliE. coli cocultures for production of muconic acid from glycerol.  Microbial Cell Fact. 2015, 14, 134. [Google Scholar]
Zhang H, Pereira B, Li Z, Stephanopoulos G. Engineering Escherichia coli coculture systems for the production of biochemical products. Proc. Natl. Acad. Sci. USA 2015, 112, 8266–8271. [Google Scholar]
Lin Y, Sun X, Yuan Q, Yan Y. Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli Metab. Eng. 2014, 23, 62–69. [Google Scholar]
Fujiwara R, Noda S, Tanaka T, Kondo A. Muconic Acid Production Using Gene-Level Fusion Proteins in Escherichia coli ACS Syn. Biol. 2018, 7, 2698–2705. [Google Scholar]
Vardon D, Franden M, Johnson C, Karp E, Guarnieri M, Linger J, et al. Adipic acid production from lignin.  Energy Environ. Sci. 2015, 8, 617–628. [Google Scholar]
Johnson CW, Salvachúa D, Khanna P, Smith H, Peterson DJ, Beckham GT. Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity.  Metab. Eng. Comm. 2016, 3, 111–119. [Google Scholar]
Johnson CW, Abraham PE, Linger JG, Khanna P, Hettich RL, Beckham GT. Eliminating a global regulator of carbon catabolite repression enhances the conversion of aromatic lignin monomers to muconate in Pseudomonas putida KT2440.  Metab. Eng. Comm. 2017, 5, 19–25. [Google Scholar]
Lee H, Shin W, Seo S, Choi S, Song J, Kim J, et al. Corynebacterium Cell Factory Design and Culture Process Optimization for Muconic Acid Biosynthesis.  Sci. Rep. 2018, 8, 18041. [Google Scholar]
Shin W, Lee D, Lee SJ, Chun G, Choi S, Kim E, et al. Characterization of a non-phosphotransferase system for cis,cis-muconic acid production in Corynebacterium glutamicum Biochem. Biophys. Res. Comm. 2018, 499, 279–284. [Google Scholar]
Polen T, Spelberg M, Bott M. Toward biotechnological production of adipic acid and precursors from biorenewables.  J. Biotechnol. 2013, 167, 75–84. [Google Scholar]
Cheng J, Hu G, Xu Y, Torrens-Spence MP, Zhou X, Wang D, et al. Production of nonnatural straight-chain amino acid 6-aminocaproate via an artificial iterative carbon-chain-extension cycle.  Metab. Eng. 2019, 55, 23–32. [Google Scholar]
Joo JC, Khusnutdinova AN, Flick R, Kim T, Bornscheuer UT, Yakunin AF, et al. Alkene hydrogenation activity of enoate reductases for an environmentally benign biosynthesis of adipic acid. Chem. Sci. 2017, 8, 1406–1413. [Google Scholar]
Zhang Q, Xu G, Pizzi A, Lei H, Xi X, Du G. A Green Resin Wood Adhesive from Synthetic Polyamide Crosslinking with Glyoxal.  Polymers 2022, 14, 2819. [Google Scholar]
Lau MK. Methods and microorganisms for the biological synthesis of (S)-2-amino-6-hydroxypimelate, hexamethylenediamine and 6-aminocaproate. US Patent US20150203879A1, 2013.
Botes AL, Conradie AE. Methods of producing 6-carbon chemicals via CoA-dependent carbon chain elongation associated with carbon storage. US Patent US9102958B2, 2012.
Markowska A, Markowski AR, Jarocka-Karpowicz I. The Importance of 6-Aminohexanoic Acid as a Hydrophobic, Flexible Structural Element.  Int. J. Mol. Sci. 2021, 22, 12122. [Google Scholar]
Bretschneider L, Wegner M, Bühler K, Bühler B, Karande R. One‐pot synthesis of 6‐aminohexanoic acid from cyclohexane using mixed‐species cultures.  Microbial Biotechnol. 2021, 14, 1011–1025. [Google Scholar]
Guptill DM, Brutman JP, Hoye TR. Thermoplastic polyurethanes from β-methyl-δ-valerolactone-derived amidodiol chain extenders.  Polymer 2017, 111, 252–257. [Google Scholar]
Schneiderman DK, Vanderlaan ME, Mannion AM, Panthani TR, Batiste DC, Wang JZ, et al. Chemically Recyclable Biobased Polyurethanes.  ACS Macro Lett. 2016, 5, 515–518. [Google Scholar]
De Poures MV, Sathiyagnanam AP, Rana D, Rajesh Kumar B, Saravanan S. 1-Hexanol as a sustainable biofuel in DI diesel engines and its effect on combustion and emissions under the influence of injection timing and exhaust gas recirculation (EGR).  Appl. Thermal Eng. 2017, 113, 1505–1513. [Google Scholar]
Harvey B, Meylemans H. 1-Hexene: a renewable C6 platform for full-performance jet and diesel fuels.  Green Chem. 2014, 16, 770–776. [Google Scholar]
Falbe J, Bahrmann H, Lipps W, Mayer D, Frey GD. Alcohols, Aliphatic.  Ullmann's Encycl. Ind. Chem. 2003, 2, 19–46. [Google Scholar]
Creative Commons

© 2023 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (