Review Open Access

In Vitro BioTransformation (ivBT): Definitions, Opportunities, and Challenges

Synthetic Biology and Engineering. 2023, 1(2), 10013; https://doi.org/10.35534/sbe.2023.10013
Yi-Heng P. Job Zhang 1,2,3 *    Zhiguang Zhu 1,2,3    Chun You 2,3    Lingling Zhang 1,2,3    Kuanqing Liu 2,3   
1
Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
2
In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
3
National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
*
Authors to whom correspondence should be addressed.

Received: 21 Jul 2023    Accepted: 28 Aug 2023    Published: 01 Sep 2023   

Abstract

Great needs always motivate the birth and development of new disciplines and tools. Here we propose in vitro BioTransformation (ivBT) as a new biomanufacturing platform, between the two dominant platforms—microbial fermentation and enzymatic biocatalysis. ivBT mediated by in vitro synthetic enzymatic biosystems (ivSEBs) is an emerging biomanufacturing platform for the production of biocommodities (i.e., low-value and bulk biochemicals). ivSEB is the in vitro reconstruction of artificial (non-natural) enzymatic pathways with numerous natural enzymes, artificial enzymes, and/or (biomimetic or natural) coenzymes without living cell’s constraints, such as cell duplication, basic metabolisms, complicated regulation, bioenergetics, and so on. The two great needs (i.e., food security and the carbon-neutral renewable energy system) have motivated the birth and development of ivBT. Food security could be addressed by making artificial food from nonfood lignocellulose and artificial photosynthesis for starch synthesis from CO2. The carbon-neutral renewable energy system could be addressed by the construction of the electricity-hydrogen-carbohydrate cycle, where starch could be a high density of hydrogen carrier (up to 14.8% H2 wt/wt) and an electricity storage compound (greater than 3000 Wh/kg). Also, ivBT can make a number of biocommodities, such as inositol, healthy sweeteners (e.g., D-allulose, D-tagatose, D-mannose), advanced biofuels, polymer precursors, organic acids, and so on. The industrial biomanufacturing of the first several biocommodities (e.g., myo-inositol, D-tagatose, D-mannose, and cellulosic starch) would wipe off any prejudice and doubt on ivBT. Huge potential markets of biocommodities with more than tens of trillions of Chinese Yuan would motivate scientists and engineers to address the remaining technical challenges and develop new tools within the next decade.

References

1.
Clomburg JM, Crumbley AM, Gonzalez R. Industrial biomanufacturing: The future of chemical production.  Science 2017, 355, aag0804. [Google Scholar]
2.
Scown CD. Prospects for carbon-negative biomanufacturing.  Trends Biotechnol. 2022, 40, 1415–1424. [Google Scholar]
3.
Zhang Y-HP, Sun J, Ma Y. Biomanufacturing: history and perspective.  J. Ind. Microbiol. Biotechnol. 2017, 44, 773–784. [Google Scholar]
4.
Sugii S, Wong CYQ, Lwin AKO, Chew LJM. Alternative fat: redefining adipocytes for biomanufacturing cultivated meat. Trends Biotechnol. 2023, 41, 686–700. [Google Scholar]
5.
Gervasi T, Pellizzeri V, Calabrese G, Di Bella G, Cicero N, Dugo G. Production of single cell protein (SCP) from food and agricultural waste by using Saccharomyces cerevisiae Nat. Prod. Res. 2018, 32, 648–653. [Google Scholar]
6.
Vasic-Racki D. History of industrial biotransformations—Dreams and realities. In Industrial Biotransformations; Wiley-VCH: Weinheim, Germany, 2006; pp. 1–37.
7.
Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K. Engineering the third wave of biocatalysis.  Nature 2012, 485, 185–194. [Google Scholar]
8.
Pereira N, Lima AC, Lanceros-Mendez S, Martins P. Magnetoelectrics: Three Centuries of Research Heading towards the 4.0 Industrial Revolution.  Materials 2020, 13, 4033. [Google Scholar]
9.
Lake F. From industry 4.0 to lab 4.0.  Biotechniques 2019, 66, 247. [Google Scholar]
10.
Schwab K. The Fourth Industrial Revolution; World Economic Forum: Geneva, Switzerland, 2016.
11.
Awang GM, Jones GA, Ingledew WM. The acetone-butanol-ethanol fermentation.  Crit. Rev. Microbiol. 1988, 15, S33–S67. [Google Scholar]
12.
Buchholz K, Collins J. The roots—a short history of industrial microbiology and biotechnology.  Appl. Microbiol. Biotechnol. 2013, 97, 3747–3762. [Google Scholar]
13.
Ezeji TC, Qureshi N, Blaschek HP. Bioproduction of butanol from biomass: from genes to bioreactors.  Curr. Opin. Biotechnol. 2007, 18, 220–227. [Google Scholar]
14.
Zhang Y-HPJ. Remembering Professor Daniel IC Wang’s contribution to biorefining and my opinions in perspective of biorefining.  Syn. Biol. J. 2021, 2, 497–508. [Google Scholar]
15.
Demain AL. Microbial biotechnology.  Trends Biotechnol. 2000, 18, 26–31. [Google Scholar]
16.
Demain AL, Newcomb M, Wu JHD. Cellulase, clostridia, and ethanol.  Microbiol. Mol. Biol. Rev. 2005, 69, 124–154. [Google Scholar]
17.
Loenen WA, Dryden DT, Raleigh EA, Wilson GG, Murray NE. Highlights of the DNA cutters: a short history of the restriction enzymes.  Nucleic Acids Res. 2014, 42, 3–19. [Google Scholar]
18.
Heckmann CM, Paradisi F. Looking Back: A Short History of the Discovery of Enzymes and How They Became Powerful Chemical Tools.  ChemCatChem 2020, 12, 6082–6102. [Google Scholar]
19.
Lee SH, Yoon KH. A Century of Progress in Diabetes Care with Insulin: A History of Innovations and Foundation for the Future.  Diabetes Metab. J. 2021, 45, 629–640. [Google Scholar]
20.
Demain AL. The business of biotechnology.  Ind. Biotechnol. 2007, 3, 269–283. [Google Scholar]
21.
Afeyan NB, Cooney CL. Professor Daniel I.C. Wang: A legacy of education, innovation, publication, and leadership.  Biotechnol. Bioeng. 2006, 95, 206–217. [Google Scholar]
22.
The World Economic Forum Water Initiative. Water Security: The Water-food-energy-climate Nexus; Island Press: Washington, DC, USA, 2011.
23.
Hodson R. Food security.  Nature 2017, 544, S5. [Google Scholar]
24.
Wang F, Harindintwali JD, Yuan Z, Wang M, Wang F, Li S, et al. Technologies and perspectives for achieving carbon neutrality.  Innovation 2021, 2, 100180. [Google Scholar]
25.
Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, et al. Temperature increase reduces global yields of major crops in four independent estimates.  Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar]
26.
Lynd LR, Beckham GT, Guss AM, Jayakody LN, Karp EM, Maranas C, et al. Toward low-cost biological and hybrid biological/catalytic conversion of cellulosic biomass to fuels.  Energy Environ. Sci. 2022, 15, 938–990. [Google Scholar]
27.
Sartbaeva A, Kuznetsov VL, Wells SA, Edwards PP.  Hydrogen nexus in a sustainable energy future.  Energy Environ. Sci. 2008, 1, 79–85. [Google Scholar]
28.
Chen H-G, Zhang Y-HP. New biorefineries and sustainable agriculture: Increased food, biofuels, and ecosystem security.  Renew. Sust. Energy Rev. 2015, 47, 117–132. [Google Scholar]
29.
Zhang Y-HP.  Next generation biorefineries will solve the food, biofuels, and environmental trilemma in the energy-food-water nexus.  Energy Sci. Eng. 2013, 1, 27–41. [Google Scholar]
30.
Zhang Y-HP, Huang W-D.  Constructing the electricity-carbohydrate-hydrogen cycle for a sustainability revolution.  Trends Biotechnol. 2012, 30, 301–306. [Google Scholar]
31.
Bazilian M, Rogner H, Howells M, Hermann S, Arent D, Gielen D, et al. Considering the energy, water and food nexus: Towards an integrated modelling approach.  Energy Policy 2011, 39, 7896–7906. [Google Scholar]
32.
Stern F. Fritz Haber: Flawed Greatness of Person and Country.  Angew. Chem. Int. Ed. 2012, 51, 50–56. [Google Scholar]
33.
Demain AL. Pickles, pectin, and penicillin.  Annu. Rev. Microbiol. 2004, 58, 1–42. [Google Scholar]
34.
Gottschalk U, Brorson K, Shukla AA. The need for innovation in biomanufacturing.  Nat. Biotechnol. 2012, 30, 489–492. [Google Scholar]
35.
Gartland KMA, Gartland JS. Opportunities in biotechnology.  J. Biotechnol. 2018, 282, 38–45. [Google Scholar]
36.
National Academies of Sciences, Engineering, and Medicine; Policy and Global Affairs; Government-University-Industry Research Roundtable. The Fourth Industrial Revolution: Proceedings of a Workshop—in Brief; National Academies Press: Washington, DC, USA; 2017.
37.
Lynd LR, Wyman CE, Gerngross TU. Biocommodity engineering.  Biotechnol. Prog. 1999, 15, 777–793. [Google Scholar]
38.
Zhang Y-HP. Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations: Challenges and opportunities.  Biotechnol. Bioeng. 2010, 105, 663–677. [Google Scholar]
39.
Frazzetto G. White biotechnology.  EMBO Rep. 2003, 4, 835–837. [Google Scholar]
40.
Bauer MW. Distinguishing Red and Green Biotechnology: Cultivation Effects of the Elite Press.  Int. J. Public Opin. Res. 2005, 17, 63–89. [Google Scholar]
41.
Zhang Y-HP. Simpler is better: high-yield and potential low-cost biofuels production through cell-free synthetic pathway biotransformation (SyPaB).  ACS Catal. 2011, 1, 998–1009. [Google Scholar]
42.
Zhang Y-HP.  Production of biofuels and biochemicals by in vitro synthetic biosystems: Opportunities and challenges.  Biotechnol. Adv. 2015, 33, 1467–1483. [Google Scholar]
43.
Zhang Y-HP, Myung S, You C, Zhu ZG, Rollin J. Toward low-cost biomanufacturing through cell-free synthetic biology: bottom-up design.  J. Mater. Chem. 2011, 21, 18877–18886. [Google Scholar]
44.
Rollin JA, Tam W, Zhang Y-HP. New biotechnology paradigm: cell-free biosystems for biomanufacturing.  Green Chem. 2013, 15, 1708–1719. [Google Scholar]
45.
Lovelock SL, Crawshaw R, Basler S, Levy C, Baker D, Hilvert D, et al. The road to fully programmable protein catalysis.  Nature 2022, 606, 49–58. [Google Scholar]
46.
Thauer K, Jungermann K, Decker K. Energy conservation in chemotrophic anaerobic bacteria.  Bacteriol. Rev. 1977, 41, 100–180. [Google Scholar]
47.
Zhang Y-HP, Evans BR, Mielenz JR, Hopkins RC, Adams MWW. High-yield hydrogen production from starch and water by a synthetic enzymatic pathway.  PLoS One 2007, 2, e456. [Google Scholar]
48.
Kim J-E, Kim E-J, Chen H, Wu C-H, Adams MWW, Zhang Y-HP. Advanced water splitting for green hydrogen gas production through complete oxidation of starch by in vitro metabolic engineering.  Metab. Eng. 2017, 44, 246–252. [Google Scholar]
49.
Desvaux M, Guedon E, Petitdemange H. Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium.  Appl. Environ. Microbiol. 2000, 66, 2461–2470. [Google Scholar]
50.
You C, Chen H, Myung S, Sathitsuksanoh N, Ma H, Zhang X-Z, et al. Enzymatic transformation of nonfood biomass to starch.  Proc. Natl. Acad. Sci. USA 2013, 110, 7182–7187. [Google Scholar]
51.
Xu X, Zhang W, You C, Fan C, Ji W, Park J-T, et al. Biosynthesis of artificial starch and microbial protein from agricultural residue.  Sci. Bull. 2023, 68, 214–223. [Google Scholar]
52.
Song Y, Wu R, Wei X, Shi T, Li Y, You C, et al. Advances in a new energy system based on electricity-hydrogen-carbohydrate cycle.  Chin. J. Biotechnol. 2022, 38, 4081–4100. [Google Scholar]
53.
Cai T, Sun H, Qiao J, Zhu L, Zhang F, Zhang J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide.  Science 2021, 373, 1523–1527. [Google Scholar]
54.
Guterl J-K, Garbe D, Carsten J, Steffler F, Sommer B, Reiße S, et al. Cell-free metabolic engineering—Production of chemicals via minimized reaction cascades.  ChemSusChem 2012, 5, 2165–2172. [Google Scholar]
55.
Yang J, Song W, Cai T, Wang Y, Zhang X, Wang W, et al. De novo artificial synthesis of hexoses from carbon dioxide. Sci. Bull. 2023, in press. doi: 10.1016/j.scib.2023.08.023.
56.
Han P, Wang X, Li Y, Wu H, Shi T, Shi J. Synthesis of a healthy sweetener D-tagatose from starch catalyzed by semiartificial cell factories.  J. Agri. Food Chem. 2023, 71, 3813–3820. [Google Scholar]
57.
Li Y, Shi T, Han P, You C. Thermodynamics-driven production of value-added D-allulose from inexpensive starch by an in vitro enzymatic synthetic biosystem.  ACS Catal. 2021, 11, 5088–5099. [Google Scholar]
58.
Graham AE, Ledesma-Amaro R. The microbial food revolution.  Nat. Commun. 2023, 14, 2231. [Google Scholar]
59.
Zhong C, You C, Wei P, Zhang Y-HP. Thermal cycling cascade biocatalysis of myo-inositol synthesis from sucrose.  ACS Catal. 2017, 7, 5992–5999. [Google Scholar]
60.
You C, Shi T, Li Y, Han P, Zhou X, Zhang Y-HP. An in vitro synthetic biology platform for the industrial biomanufacturing of myo-inositol from starch.  Biotechnol. Bioeng. 2017, 114, 1855–1864. [Google Scholar]
61.
Chen H-G, Zhang Y-HPJ. Enzymatic regeneration and conservation of ATP: challenges and opportunities.  Crit. Rev. Biotechnol. 2021, 41, 16–33. [Google Scholar]
62.
Andexer JN, Richter M. Emerging enzymes for ATP regeneration in biocatalytic processes.  ChemBioChem 2015, 16, 380–386. [Google Scholar]
63.
Welch P, Scopes RK. Studies on cell-free metabolism: Ethanol production by a yeast glycolytic system reconstituted from purified enzymes.  J. Biotechnol. 1985, 2, 257–273. [Google Scholar]
64.
Allain EJ. Cell-free ethanol production: the future of fuel ethanol? J. Chem. Technol. Biotechnol. 2007, 82, 117–120. [Google Scholar]
65.
Jewett MC, Calhoun KA, Voloshin A, Wuu JJ, Swartz JR. An integrated cell-free metabolic platform for protein production and synthetic biology.  Mol. Syst. Biol. 2008, 4, 220. [Google Scholar]
66.
Wichmann R, Vasic-Racki D. Cofactor regeneration at the lab scale.  Adv. Biochem. Eng. Biotechnol. 2005, 92, 225–260. [Google Scholar]
67.
Zhu Z-G, Kin Tam T, Sun F, You C, Zhang Y-HP. A high-energy-density sugar biobattery based on a synthetic enzymatic pathway. Nat. Commun. 2014, 5, 3026. [Google Scholar]
68.
Nowak C, Pick A, Lommes P, Sieber V. Enzymatic reduction of nicotinamide biomimetic cofactors using an engineered glucose dehydrogenase: providing a regeneration system for artificial cofactors.  ACS Catal. 2017, 7, 5202–5208. [Google Scholar]
69.
Song Y, Liu M, Xie L, You C, Sun J, Zhang Y-HPJ. A recombinant 12-His tagged Pyrococcus furiosus soluble [NiFe]-hydrogenase I overexpressed in Thermococcus kodakarensis KOD1 facilitates hydrogen-powered in vitro NADH regeneration.  Biotechnol. J. 2019, 14, e1800301. [Google Scholar]
70.
Anne A, Bourdillon C, Daninos S, Moiroux J.  Can the combination of electrochemical regeneration of NAD+, selectivity of L-a-amino-acid dehydrogenase, and reductive amination of a-keto-acid be applied to the inversion of configuration of a L-a-amino-acid?  Biotechnol. Bioeng. 1999, 64, 101–107. [Google Scholar]
71.
Tishkov VI, Popov VO.  Protein engineering of formate dehydrogenase.  Biomol. Eng. 2006, 23, 89–110. [Google Scholar]
72.
Wandrey C. Biochemical reaction engineering for redox reactions. Chem. Rec. 2004, 4, 254–265. [Google Scholar]
73.
Inoue K, Makino Y, Itoh N. Purification and characterization of a novel alcohol dehydrogenase from Leifsonia sp. strain S749: a promising biocatalyst for an asymmetric hydrogen transfer bioreduction.  Appl. Environ. Microbiol. 2005, 71, 3633–3641. [Google Scholar]
74.
Johannes TW, Woodyer RD, Zhao H. Directed evolution of a thermostable phosphite dehydrogenase for NAD(P)H regeneration.  Appl. Environ. Microbiol. 2005, 71, 5728–5734. [Google Scholar]
75.
Wang Y, Zhang Y-HP. Overexpression and simple purification of the Thermotoga maritima 6-phosphogluconate dehydrogenase in Escherichia coli and its application for NADPH regeneration.  Microb. Cell Fact. 2009, 8, 30. [Google Scholar]
76.
Wang Y, Huang W, Sathitsuksanoh N, Zhu Z, Zhang Y-HP. Biohydrogenation from biomass sugar mediated by in vitro synthetic enzymatic pathways.  Chem. Biol. 2011, 18, 372–380. [Google Scholar]
77.
Huang H, Pandya C, Liu C, Al-Obaidi NF, Wang M, Zheng L, et al. Panoramic view of a superfamily of phosphatases through substrate profiling.  Proc. Natl. Acad. Sci. USA 2015, 112, E1974–E1983. [Google Scholar]
78.
Verhees CH, Akerboom J, Schiltz E, de Vos WM, van der Oost J. Molecular and biochemical characterization of a distinct type of fructose-1,6-bisphosphatase from Pyrococcus furiosus J. Bacteriol. 2002, 184, 3401–3405. [Google Scholar]
79.
Tian C, Yang J, Liu C, Chen P, Zhang T, Men Y, et al. Engineering substrate specificity of HAD phosphatases and multienzyme systems development for the thermodynamic-driven manufacturing sugars.  Nat. Commun. 2022, 13, 3582. [Google Scholar]
80.
Wang W, Liu M, You C, Li Z, Zhang Y-HP. ATP-free biosynthesis of a high-energy phosphate metabolite fructose 1,6-diphosphate by in vitro metabolic engineering.  Metab. Eng. 2017, 42, 168–174. [Google Scholar]
81.
Zhou W, You C, Ma H, Ma Y, Zhang Y-HP. One-pot biosynthesis of high-concentration α-glucose 1-phosphate from starch by sequential addition of three hyperthermophilic enzymes.  J. Agric. Food Chem. 2016, 64, 1777–1783. [Google Scholar]
82.
Srivastava DK, Bernhard SA. Metabolite transfer via enzyme-enzyme complexes.  Science 1986, 234, 1081–1086. [Google Scholar]
83.
Zhang Y-HP. Substrate channeling and enzyme complexes for biotechnological applications.  Biotechnol. Adv. 2011, 29, 715–725. [Google Scholar]
84.
You C, Myung S, Zhang Y-HP. Facilitated substrate channeling in a self-assembled trifunctional enzyme complex.  Angew. Chem. Int. Ed. 2012, 51, 8787–8790. [Google Scholar]
85.
Miles EW, Rhee S, Davies DR. The molecular basis of substrate channeling.  J. Biol. Chem. 1999, 274, 12193–12196. [Google Scholar]
86.
Zhu Z, Song H, Wang Y, Zhang Y-HPJ. Protein engineering for electrochemical biosensors.  Curr. Opin. Biotechnol. 2022, 76, 102751. [Google Scholar]
87.
Chen K, Arnold FH. Engineering new catalytic activities in enzymes.  Nat. Catal. 2020, 3, 203–213. [Google Scholar]
88.
Arnold FH. Innovation by evolution: Bringing new chemistry to life (Nobel lecture).  Angew. Chem. Int. Ed. 2019, 58, 14420–14426. [Google Scholar]
89.
Zhou W, Huang R, Zhu Z, Zhang Y-HPJ. Coevolution of both thermostability and activity of polyphosphate glucokinase from Thermobifida fusca YX.  Appl. Environ. Microbiol. 2018, 84, e01224–e01218. [Google Scholar]
90.
Huang R, Chen H, Zhou W, Ma C, Zhang Y-HP.  Engineering a thermostable highly active glucose 6-phosphate dehydrogenase and its application to hydrogen production in vitro.  Appl. Microbiol. Biotechnol. 2018, 102, 3203–3215. [Google Scholar]
91.
Liu W, Hong J, Bevan DR, Zhang Y-HP.  Fast identification of thermostable beta-glucosidase mutants on cellobiose by a novel combinatorial selection/screening approach.  Biotechnol. Bioeng. 2009, 103, 1087–1094. [Google Scholar]
92.
Myung S, Wang YR, Zhang Y-HP. Fructose-1,6-bisphosphatase from a hyper-thermophilic bacterium Thermotoga maritima: Characterization, metabolite stability and its implications.  Proc. Biochem. 2010, 45, 1882–1887. [Google Scholar]
93.
Xu Z, Cen YK, Zou SP, Xue YP, Zheng YG. Recent advances in the improvement of enzyme thermostability by structure modification.  Crit. Rev. Biotechnol. 2020, 40, 83–98. [Google Scholar]
94.
Wheeler LC, Lim SA, Marqusee S, Harms MJ. The thermostability and specificity of ancient proteins.  Curr. Opin. Struct. Biol. 2016, 38, 37–43. [Google Scholar]
95.
Nezhad NG, Rahman R, Normi YM, Oslan SN, Shariff FM, Leow TC. Thermostability engineering of industrial enzymes through structure modification.  Appl. Microbiol. Biotechnol. 2022, 106, 4845–4866. [Google Scholar]
96.
Huang R, Chen H, Upp DM, Lewis JC, Zhang Y-HPJ. A high-throughput method for directed evolution of NAD(P)+-dependent dehydrogenases for the reduction of biomimetic nicotinamide analogues.  ACS Catal. 2019, 9, 11709–11719. [Google Scholar]
97.
Huang R, Chen H, Zhong C, Kim JE, Zhang Y-HP. High-throughput screening of coenzyme preference change of thermophilic 6-phosphogluconate dehydrogenase from NADP+ to NAD+. Sci. Rep. 2016, 6, 32644. [Google Scholar]
98.
Meng D, Liu M, Su H, Song H, Chen L, Li Q, et al. Coenzyme engineering of glucose-6-phosphate dehydrogenase on a nicotinamide-based biomimic and its application as a glucose biosensor.  ACS Catal. 2023, 13, 1983–1998. [Google Scholar]
99.
Zachos I, Güner S, Essert A, Lommes P, Sieber V. Boosting artificial nicotinamide cofactor systems.  Chem. Commun. 2022, 58, 11945–11948. [Google Scholar]
100.
Zachos I, Genth R, Sutiono S, Marczynski M, Lieleg O, Sieber V. Hot Flows: Evolving an Archaeal Glucose Dehydrogenase for Ultrastable Carba-NADP+ Using Microfluidics at Elevated Temperatures.  ACS Catal. 2022, 12, 1841–1846. [Google Scholar]
101.
Ma CL, Wu RR, Huang R, Jiang WX, You C, Zhu LL, et al. Directed evolution of a 6-phosphogluconate dehydrogenase for operating an enzymatic fuel cell at lowered anodic pHs.  J. Electroanal. Chem. 2019, 851, 113444. [Google Scholar]
102.
Ma CL, Liu MX, You C, Zhu ZG. Engineering a diaphorase via directed evolution for enzymatic biofuel cell application.  Biores. Bioproc. 2020, 7, 1–11. [Google Scholar]
103.
Li H, Du H, Wang X, Gao P, Liu Y, Lin W. Remarks on computational method for identifying acid and alkaline enzymes.  Curr. Pharm. Des. 2020, 26, 3105–3114. [Google Scholar]
104.
Sakoda H, Imanaka T. Cloning and sequencing of the gene coding for alcohol dehydrogenase of Bacillus stearothermophilus and rational shift of the optimum pH.  J. Bacteriol. 1992, 174, 1397–1402. [Google Scholar]
105.
Schäfer T, Borchert TW, Nielsen VS, Skagerlind P, Gibson K, Wenger K, et al. Industrial enzymes.  Adv. Biochem. Eng. Biotechnol. 2007, 105, 59–131. [Google Scholar]
106.
Liese A, Hilterhaus L. Evaluation of immobilized enzymes for industrial applications.  Chem. Soc. Rev. 2013, 42, 6236–6249. [Google Scholar]
107.
Arana-Peña S, Carballares D, Morellon-Sterlling R, Berenguer-Murcia Á, Alcántara AR, Rodrigues RC, et al. Enzyme co-immobilization: Always the biocatalyst designers’ choice…or not?  Biotechnol. Adv. 2021, 51, 107584. [Google Scholar]
108.
Kim E-J, Kim J-E, Zhang Y-HPJ. Ultra-rapid rates of water splitting for biohydrogen gas production through in vitro artificial enzymatic pathways.  Energy Environ. Sci. 2018, 11, 2064–2072. [Google Scholar]
109.
Woodley JM, Bisschops M, Straathof AJJ, Ottens M. Future directions for in-situ product removal (ISPR).  J. Chem. Technol. Biotechnol. 2008, 83, 121–123. [Google Scholar]
110.
Deng X, Fan M, Wu M, Zhang X, Cheng Y, Xia J, et al. Continuous-flow enzymatic synthesis of chiral lactones in a three-dimensional microfluidic reactor. Chin. Chem. Lett. 2023. doi:10.1016/j.cclet.2023.108684.
111.
Li H-P, You Z-N, Liu Y-Y, Zheng G-W, Gong H, Mo Y, et al. Continuous-flow microreactor-enhanced clean NAD+ regeneration for biosynthesis of 7-oxo-lithocholic acid.  ACS Sust. Chem. Eng. 2022, 10, 456–463. [Google Scholar]
112.
Myung S, Zhang Y-HP. Non-complexed four cascade enzyme mixture: simple purification and synergetic co-stabilization.  PLoS ONE 2013, 8, e61500. [Google Scholar]
113.
Ellis RJ. Macromolecular crowding: obvious but underappreciated.  Trends Biochem. Sci. 2001, 26, 597–604. [Google Scholar]
114.
Minton AP. The Influence of Macromolecular Crowding and Macromolecular Confinement on Biochemical Reactions in Physiological Media.  J. Biol. Chem. 2001, 276, 10577–10580. [Google Scholar]
115.
Freeman A, Woodley JM, Lilly MD. In Situ Product Removal as a Tool for Bioprocessing. Nat. Biotechnol. 1993, 11, 1007–1012. [Google Scholar]
116.
Buchner E.  Alkoholische Gärung ohne Hefezellen (Vorläufige Mitteilung).  Berichte der Deutschen Chemischen Gesellschaft 1897, 30, 117–124. [Google Scholar]
117.
Kresge N, Simoni RD, Hill RL. Otto Fritz Meyerhof and the Elucidation of the Glycolytic Pathway.  J. Biol. Chem. 2005, 280, e3. [Google Scholar]
118.
Krebs HA, Eggleston LV. Metabolism of Acetoacetic Acid in Animal Tissues.  Nature 1944, 154, 209–210. [Google Scholar]
119.
Krebs HA. The discovery of carbon dioxide fixation in mammalian tissues.  Mol. Cell. Biochem. 1974, 5, 79–94. [Google Scholar]
120.
Berg P, Mertz JE. Personal reflections on the origins and emergence of recombinant DNA technology.  Genetics 2010, 184, 9–17. [Google Scholar]
121.
Bartlett JM, Stirling D. A short history of the polymerase chain reaction.  Methods Mol. Biol. 2003, 226, 3–6. [Google Scholar]
122.
Chen K, Arnold FH. Turning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide.  Proc. Natl. Acad. Sci. USA 1993, 90, 5618–5622. [Google Scholar]
123.
Arnold FH. Directed evolution: Bringing new chemistry to life.  Angew. Chem. Int. Ed. 2018, 57, 4143–4148. [Google Scholar]
124.
Yu X, Liu T, Zhu F, Khosla C. In vitro reconstitution and steady-state analysis of the fatty acid synthase from Escherichia coli Proc. Nat. Acad. Sci. USA 2011, 108, 18643–18648. [Google Scholar]
125.
Zhu F, Zhong X, Hu M, Lu L, Deng Z, Liu T. In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli Biotechnol. Bioeng. 2014, 111, 1396–1405. [Google Scholar]
126.
Keller MW, Schut GJ, Lipscomb GL, Menon AL, Iwuchukwu IJ, Leuko TT, et al. Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide.  Proc. Nat. Acad. Sci. USA 2013, 110, 5840–5845. [Google Scholar]
127.
Bogorad IW, Lin T-S, Liao JC. Synthetic non-oxidative glycolysis enables complete carbon conservation.  Nature 2013, 502, 693–697. [Google Scholar]
128.
Michels P, Rosazza J. The evolution of microbial transformations for industrial applications.  SIM News 2009, 2009, 36–52. [Google Scholar]
129.
Fu J, Yang YR, Johnson-Buck A, Liu M, Liu Y, Walter NG, et al. Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm.  Nat. Nanotechnol. 2014, 9, 531–536. [Google Scholar]
130.
Lin J-L, Palomec L, Wheeldon I. Design and Analysis of Enhanced Catalysis in Scaffolded Multi-Enzyme Cascade Reactions. ACS Catal. 2014, 4, 505–511.
131.
France SP, Hepworth LJ, Turner NJ, Flitsch SL. Constructing biocatalytic cascades: In vitro and in vivo approaches to de novo multi-enzyme pathways.  ACS Catal. 2017, 7, 710–724. [Google Scholar]
132.
Woodley JM. Accelerating the implementation of biocatalysis in industry.  Appl. Microbiol. Biotechnol. 2019, 103, 4733–4739. [Google Scholar]
133.
Wildeman SMAD, Sonke T, Schoemaker HE, May O. Biocatalytic reductions: From lab curiosity to “first choice”.  Acc. Chem. Res. 2007, 40, 1260–1266. [Google Scholar]
134.
Bozic M, Pricelius S, Guebitz GM, Kokol V. Enzymatic reduction of complex redox dyes using NADH-dependent reductase from Bacillus subtilis coupled with cofactor regeneration.  Appl. Microbiol. Biotechnol. 2010, 85, 563–571. [Google Scholar]
135.
Xu Z, Jing K, Liu Y, Cen P. High-level expression of recombinant glucose dehydrogenase and its application in NADPH regeneration.  J. Ind. Microbiol. Biotechnol. 2007, 34, 83–90. [Google Scholar]
136.
Mertens R, Liese A. Biotechnological applications of hydrogenases.  Curr. Opin. Biotechnol. 2004, 15, 343–348. [Google Scholar]
137.
Johannes TW, Woodyer RD, Zhao H. Efficient regeneration of NADPH using an engineered phosphite dehydrogenase.  Biotechnol. Bioeng. 2007, 96, 18–26. [Google Scholar]
138.
Nam KY, Struck DK, Holtzapple MT.  ATP regeneration by thermostable ATP synthase.  Biotechnol. Bioeng. 1996, 51, 305–316. [Google Scholar]
139.
Resnick SM, Zehnder AJ. In vitro ATP regeneration from polyphosphate and AMP by polyphosphate:AMP phosphotransferase and adenylate kinase from Acinetobacter johnsonii 210A.  Appl. Environ. Microbiol. 2000, 66, 2045–2051. [Google Scholar]
140.
Franke D, Machajewski T, Hsu C-C, Wong C-H. One-pot synthesis of L-fructose using coupled multienzyme systems based on rhamnulose-1-phosphate aldolase.  J. Org. Chem. 2003, 68, 6828–6831. [Google Scholar]
141.
Schoevaart R, van Rantwijk F, Sheldon RA. A four-step enzymatic cascade for the one-pot synthesis of non-natural carbohydrates from glycerol.  J. Org. Chem. 2000, 65, 6940–6943. [Google Scholar]
142.
Huang K-T, Wu B-C, Lin C-C, Luo S-C, Chen C, Wong C-H, et al. Multi-enzyme one-pot strategy for the synthesis of sialyl Lewis X-containing PSGL-1 glycopeptide.  Carbohydr. Res. 2006, 341, 2151–2155. [Google Scholar]
143.
Zhang J, Shao J, Kowal P, Wang PG. Enzymatic Synthesis of Oligosaccharides; Wiley-VCH: Weinheim, Germany, 2005.
144.
Fessner W-D, Helaine V. Biocatalytic synthesis of hydroxylated natural products using aldolases and related enzymes.  Curr. Opin. Biotechnol. 2001, 12, 574–586. [Google Scholar]
145.
Fessner W-D. Enzyme mediated C–C bond formation.  Curr. Opin. Chem. Biol. 1998, 2, 85–97. [Google Scholar]
146.
Endo T, Koizumi S.  Large-scale production of oligosaccharides using engineered bacteria.  Curr. Opin. Struct. Biol. 2000, 10, 536–541. [Google Scholar]
147.
Fessner W-D. Systems biocatalysis: development and engineering of cell-free “artificial metabolisms” for preparative multi-enzymatic synthesis.  New Biotechnol. 2015, 32, 658–664. [Google Scholar]
148.
Tessaro D, Pollegioni L, Piubelli L, D’Arrigo P, Servi S. Systems biocatalysis: An artificial metabolism for interconversion of functional groups.  ACS Catal. 2015, 5, 1604–1608. [Google Scholar]
149.
Opgenorth PH, Korman TP, Bowie JU. A synthetic biochemistry molecular purge valve module that maintains redox balance.  Nat. Commun. 2014, 5, 4113. [Google Scholar]
150.
Korman TP, Opgenorth PH, Bowie JU. A synthetic biochemistry platform for cell free production of monoterpenes from glucose. Nat. Commun. 2017, 8, 15526. [Google Scholar]
151.
Koeller KM, Wong C-H. Enzymes for chemical synthesis.  Nature 2001, 409, 232–240. [Google Scholar]
152.
Ayala-Aguilera CC, Valero T, Lorente-Macías Á, Baillache DJ, Croke S, Unciti-Broceta A. Small molecule kinase inhibitor drugs (1995–2021): medical indication, pharmacology, and synthesis.  J. Med. Chem. 2022, 65, 1047–1131. [Google Scholar]
153.
Han P, You C, Li Y, Shi T, Wu H, Zhang Y-HPJ. High-titer production of myo-inositol by a co-immobilized four-enzyme cocktail in biomimetic mineralized microcapsules.  Chem. Eng. J. 2023, 461, 141946. [Google Scholar]
154.
Teixeira CSS, Sousa SF. Current status of the use of multifunctional enzymes as anti-cancer drug targets.  Pharmaceutics 2021, 14, 10. [Google Scholar]
155.
Swartz JR. Cell-free bioprocessing.  Chem. Eng. Prog. 2013, 2013, 40–45. [Google Scholar]
156.
Carlson ED, Gan R, Hodgman CE, Jewett MC. Cell-free protein synthesis: Applications come of age.  Biotechnol. Adv. 2012, 30, 1185–1194. [Google Scholar]
157.
Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, et al. Cell-free translation reconstituted with purified components.  Nat. Biotechnol. 2001, 19, 751–755. [Google Scholar]
158.
Dudley QM, Karim AS, Jewett MC. Cell-free metabolic engineering: Biomanufacturing beyond the cell.  Biotechnol. J. 2015, 10, 69–82. [Google Scholar]
159.
Rasor BJ, Vögeli B, Landwehr GM, Bogart JW, Karim AS, Jewett MC. Toward sustainable, cell-free biomanufacturing.  Curr. Opin. Biotechnol. 2021, 69, 136–144. [Google Scholar]
160.
Karim AS, Jewett MC. A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery.  Metab. Eng. 2016, 36, 116–126. [Google Scholar]
161.
Harris DC, Jewett MC. Cell-free biology: exploiting the interface between synthetic biology and synthetic chemistry.  Curr. Opin. Biotechnol. 2012, 12, 672–678. [Google Scholar]
162.
Chiba CH, Knirsch MC, Azzoni AR, Moreira AR, Stephano MA. Cell-free protein synthesis: advances on production process for biopharmaceuticals and immunobiological products.  Biotechniques 2021, 70, 126–133. [Google Scholar]
163.
Pardee K, Slomovic S, Nguyen Peter Q, Lee Jeong W, Donghia N, Burrill D, et al. Portable, on-demand biomolecular manufacturing.  Cell 2016, 167, 248–259. [Google Scholar]
164.
Stamatis C, Farid SS. Process economics evaluation of cell-free synthesis for the commercial manufacture of antibody drug conjugates.  Biotechnol. J. 2021, 16, e2000238. [Google Scholar]
165.
Stech M, Rakotoarinoro N, Teichmann T, Zemella A, Thoring L, Kubick S.  Synthesis of fluorescently labeled antibodies using non-canonical amino acids in eukaryotic cell-free systems.  Methods Mol. Biol. 2021, 2305, 175–190. [Google Scholar]
166.
Lüddecke T, Paas A, Talmann L, Kirchhoff KN, von Reumont BM, Billion A, et al. A Spider Toxin Exemplifies the Promises and Pitfalls of Cell-Free Protein Production for Venom Biodiscovery.  Toxins 2021, 13, 575. [Google Scholar]
167.
Ramm F, Jack L, Kaser D, Schloßhauer JL, Zemella A, Kubick S. Cell-Free Systems Enable the Production of AB(5) Toxins for Diagnostic Applications.  Toxins 2022, 14, 233. [Google Scholar]
168.
Pe’ery T, Mathews MB.  Synthesis and purification of single-stranded RNA for use in experiments with PKR and in cell-free translation systems.  Methods 1997, 11, 371–381. [Google Scholar]
169.
Rollin JA, Martin del Campo J, Myung S, Sun F, You C, Bakovic A, et al. High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling.  Proc. Natl. Acad. Sci. USA 2015, 112, 4964–4969. [Google Scholar]
170.
Opgenorth PH, Korman TP, Bowie JU. A synthetic biochemistry module for production of bio-based chemicals from glucose.  Nat. Chem. Biol. 2016, 12, 393–395. [Google Scholar]
171.
Cheng K, Zheng W, Chen H, Zhang Y-HPJ. Upgrade of wood sugar D-xylose to a value-added nutraceutical by in vitro metabolic engineering.  Metab. Eng. 2019, 52, 1–8. [Google Scholar]
172.
Shi T, Liu S, Zhang Y-HPJ. CO2 fixation for malate synthesis energized by starch via in vitro metabolic engineering.  Metab. Eng. 2019, 55, 152–160. [Google Scholar]
173.
Kim E-J, Adams M, Wu C-H, Zhang Y-HP. Exceptionally high rates of biological hydrogen production by biomimetic in vitro synthetic enzymatic pathways.  Chemistry 2016, 22, 16047–16051. [Google Scholar]
174.
Opgenorth PH, Korman TP, Iancu L, Bowie JU. A molecular rheostat maintains ATP levels to drive a synthetic biochemistry system.  Nat. Chem. Biol. 2017, 13, 938–942. [Google Scholar]
175.
Hold C, Billerbeck S, Panke S. Forward design of a complex enzyme cascade reaction.  Nat. Commun. 2016, 7, 12971. [Google Scholar]
176.
Holtzapple MT, Cognata M, Shu Y, Hendrickson C.  Inhibition of Trichoderma reesei cellulase by sugars and solvents.  Biotechnol. Bioeng. 1990, 36, 275–287. [Google Scholar]
177.
Serdakowski A, Dordick J. Enzyme activation for organic solvents made easy.  Trends Biotechnol. 2008, 26, 48–54. [Google Scholar]
178.
Garcia V, Pakkila J, Ojamo H, Muurinen E, Keiski RL. Challenges in biobutanol production: How to improve the efficiency?  Renew. Sustain. Energy Rev. 2011, 15, 964–980. [Google Scholar]
179.
Fujisawa T, Fujinaga S, Atomi H. An in vitro enzyme system for the production of myo-inositol from starch.  Appl. Environ. Microbiol. 2017, 83, e00550–e00517. [Google Scholar]
180.
Wichelecki DJ, Zhang YHP. Enzymatic synthesis of D-tagatose. World Patent WO2017059278A1, 2015.
181.
Zhang Y-HP, You C. Inositol preparation method. China Patent CN106148425B, 2015.
182.
Zhang Y-HP, Zhou W. D-xylulose 4-epimerase, mutants and applications. World Patent WO2021135796A1, 2019.
183.
Zhan S, Li Y, Li Y, Cui X, Zhong J-J, Zhang Y-HPJ. Aminomutation catalyzed by CO2 self-sufficient cascade amino acid decarboxylases. bioRxiv 2023. doi: 10.1101/2023.08.12.552924.
184.
Colodny L, Hoffman RL. Inositol—clinical applications for exogenous use.  Altern. Med. Rev. 1998, 3, 432–447. [Google Scholar]
185.
Cheng K, Zhang F, Sun F-F, Zhu Z-G, Chen H-G, Zhang Y-HP. Doubling power output of starch biobattery treated by the most thermostable isoamylase from an archaeon Sulfolobus tokodaii. Sci. Rep. 2015, 5, 13184 . [Google Scholar]
186.
Liao HH, Myung S, Zhang Y-HP. One-step purification and immobilization of thermophilic polyphosphate glucokinase from Thermobifida fusca YX: glucose-6-phosphate generation without ATP.  Appl. Microbiol. Biotechnol. 2012, 93, 1109–1117. [Google Scholar]
187.
Flamholz A, Noor E, Bar-Even A, Milo R. eQuilibrator—the biochemical thermodynamics calculator.  Nucl. Acids Res. 2012, 40, D770–D775. [Google Scholar]
188.
You R, Wang L, Shi C, Chen H, Zhang S, Hu M, et al. Efficient production of myo-inositol in Escherichia coli through metabolic engineering.  Microb. Cell Fact. 2020, 19, 109. [Google Scholar]
189.
Tang E, Shen X, Wang J, Sun X, Yuan Q. Synergetic utilization of glucose and glycerol for efficient myo-inositol biosynthesis.  Biotechnol. Bioeng. 2020, 117, 1247–1252. [Google Scholar]
190.
Han P, Zhou X, You C.  Efficient multi-enzymes imobilized on Porous microspheres for producing inositol From starch.  Front. Bioeng. Biotechnol. 2020, 8, 380. [Google Scholar]
191.
Lu Y, Wang L, Teng F, Zhang J, Hu M, Tao Y. Production of myo-inositol from glucose by a novel trienzymatic cascade of polyphosphate glucokinase, inositol 1-phosphate synthase and inositol monophosphatase.  Enzyme Microb. Technol. 2018, 112, 1–5. [Google Scholar]
192.
Meng D, Wei X, Zhang Y-HPJ, Zhu Z, You C, Ma Y. Stoichiometric conversion of cellulosic biomass by in vitro synthetic enzymatic biosystems for biomanufacturing.  ACS Catal. 2018, 8, 9550–9559. [Google Scholar]
193.
Granström TB, Takata G, Tokuda M, Izumori K. Izumoring: A novel and complete strategy for bioproduction of rare sugars.  J. Biosci. Bioeng. 2004, 97, 89–94. [Google Scholar]
194.
Zhang W, Zhang T, Jiang B, Mu W. Enzymatic approaches to rare sugar production.  Biotechnol. Adv. 2017, 35, 267–274. [Google Scholar]
195.
Izumori K. Izumoring: a strategy for bioproduction of all hexoses.  J. Biotechnol. 2006, 124, 717–722. [Google Scholar]
196.
Levin GV. Tagatose, the new GRAS sweetener and health product.  J. Med. Food 2002, 5, 23–36. [Google Scholar]
197.
Cheetham PSJ, Wootton AN. Bioconversion of D-galactose into D-tagatose.  Enzyme Microb. Technol. 1993, 15, 105–108. [Google Scholar]
198.
Rhimi M, Aghajari N, Juy M, Chouayekh H, Maguin E, Haser R, et al. Rational design of Bacillus stearothermophilus US100 L-arabinose isomerase: Potential applications for D-tagatose production.  Biochim. 2009, 91, 650–653. [Google Scholar]
199.
Men Y, Zhu Y, Zhang L, Kang Z, Izumori K, Sun Y, et al. Enzymatic conversion of D-galactose to D-tagatose: Cloning, overexpression and characterization of L-arabinose isomerase from Pediococcus pentosaceus PC-5.  Microbiol. Res. 2014, 169, 171–178. [Google Scholar]
200.
Chan HC, Zhu Y, Hu Y, Ko TP, Huang CH, Ren F, et al. Crystal structures of D-psicose 3-epimerase from Clostridium cellulolyticum H10 and its complex with ketohexose sugars.  Protein Cell 2012, 3, 123–131. [Google Scholar]
201.
Men Y, Zhu Y, Guan Y, Zhang T, Izumori K, Sun Y. Screening of food-grade microorganisms for biotransformation of D-tagatose and cloning and expression of L-arabinose isomerase.  Sheng Wu Gong Cheng Xue Bao 2012, 28, 592–601. [Google Scholar]
202.
Li Y, Zhu Y, Liu A, Sun Y. Identification and characterization of a novel L-arabinose isomerase from Anoxybacillus flavithermus useful in D-tagatose production.  Extremophiles 2011, 15, 441–450. [Google Scholar]
203.
Sun Y, Zhu Y. Nucleotide sequence of Clostridium D-tagatose 3-epimerase and application thereof. China Patent CN102373230A, 2010.
204.
Sun Y, Zhu Y. Nucleotide sequence of D-tagatose-3-epimerase (DTE) of Ruminococcus sp. and use thereof. China Patent CN103131721B, 2011.
205.
Bosshart A, Hee CS, Bechtold M, Schirmer T, Panke S. Directed divergent evolution of a thermostable D-tagatose epimerase towards improved activity for two hexose substrates.  ChemBioChem 2015, 16, 592–601. [Google Scholar]
206.
Oh H-J, Kim H-J, Oh D-K. Increase in D-tagatose Production Rate by Site-directed Mutagenesis of L-arabinose Isomerase from Geobacillus thermodenitrificans Biotechnol. Lett. 2006, 28, 145–149. [Google Scholar]
207.
Wichelecki DJ, Vetting MW, Chou L, Al-Obaidi N, Bouvier JT, Almo SC, et al. ATP-binding cassette (ABC) transport system solute-binding protein-guided identification of novel D-altritol and galactitol catabolic pathways in Agrobacterium tumefaciens C58.  J. Biol. Chem. 2015, 290, 28963–28976. [Google Scholar]
208.
Oh D-K, Hong S-H, Lee S-H. Aldolase, aldolase mutant, and method and composition for producing tagatose by using same. WO2015016544 A1. US Patent 2015.
209.
Moradian A, Benner SA. A biomimetic biotechnological process for converting starch to fructose: thermodynamic and evolutionary considerations in applied enzymology.  J. Am. Chem. Soc. 1992, 114, 6980–6987. [Google Scholar]
210.
Ma Y, Sun Y. The preparation method of tagatose. China Patent CN106399427B, 2016.
211.
Ma Y, Sun Y, Yang J, Li Y. Method for preparing tagatose through whole-cell catalysis. China Patent CN 107988286B, 2017.
212.
Ma Y, Shi T, Li Y, Han P, Li Y. Bacillus subtilis gene engineering bacteria for producing tagatose and method for preparing tagatose. CN112342179B. 2021.
213.
Ma Y, Sun Y, Yang J, Li Y. Engineering strain for producing tagatose, and construction method and application thereof. China Patent CN109666620B. 2019.
214.
Dai Y, Zhang T, Jiang B, Mu W, Chen J, Hassanin HA. Dictyoglomus turgidum DSM 6724 α-Glucan Phosphorylase: Characterization and Its Application in Multi-enzyme Cascade Reaction for D-Tagatose Production.  Appl. Biochem. Biotechnol. 2021, 193, 3719–3731. [Google Scholar]
215.
Dai Y, Zhang J, Zhang T, Chen J, Hassanin HA, Jiang B. Characteristics of a fructose 6-phosphate 4-epimerase from Caldilinea aerophila DSM 14535 and its application for biosynthesis of tagatose.  Enzyme Microb. Technol. 2020, 139, 109594. [Google Scholar]
216.
Dai Y, Li C, Zheng L, Jiang B, Zhang T, Chen J. Enhanced biosynthesis of D-tagatose from maltodextrin through modular pathway engineering of recombinant Escherichia coli Biochem. Eng. J. 2022, 178, 108303. [Google Scholar]
217.
Zhang W, Yu S, Zhang T, Jiang B, Mu W. Recent advances in D-allulose: Physiological functionalities, applications, and biological production. Trends Food Sci. Technol. 2016, 54, 127137. [Google Scholar]
218.
Jiang S, Xiao W, Zhu X, Yang P, Zheng Z, Lu S, et al. Review on D-Allulose: In vivo Metabolism, Catalytic Mechanism, Engineering Strain Construction, Bio-Production Technology.  Front. Bioeng. Biotechnol. 2020, 8, 26. [Google Scholar]
219.
Matsuo T, Suzuki H, Hashiguchi M, Izumori K. D-psicose is a rare sugar that provides no energy to growing rats.  J. Nutr. Sci. Vitaminol. 2002, 48, 77–80. [Google Scholar]
220.
Zeng Y, Zhang X, Guan Y, Sun Y. Characteristics and antioxidant activity of Maillard reaction products from psicose-lysine and fructose-lysine model systems.  J. Food Sci. 2011, 76, C398–C403. [Google Scholar]
221.
Hayashi N, Iida T, Yamada T, Okuma K, Takehara I, Yamamoto T, et al. Study on the postprandial blood glucose suppression effect of D-psicose in borderline diabetes and the safety of long-term ingestion by normal human subjects.  Biosci. Biotechnol. Biochem. 2010, 74, 510–519. [Google Scholar]
222.
Chung MY, Oh DK, Lee KW. Hypoglycemic health benefits of D-psicose.  J. Agric. Food Chem. 2012, 60, 863–869. [Google Scholar]
223.
Moller DE, Berger JP. Role of PPARs in the regulation of obesity-related insulin sensitivity and inflammation.  Int. J. Obes. Relat. Metab. Disord. 2003, 27, S17–S21. [Google Scholar]
224.
Yang S, Cho HK, Lee YM, Kim SB, Cho SJ. Thermostable fructose-6-phosphate-3-epimerase and a method for producing allulose using the same. US Patent 10907182, 2017.
225.
Wichelecki DJ, Rogers E. Enzymatic production of hexoses. World Patent WO2018169957A1, Patent 2017.
226.
Maceachran D, Cunningham DS, Blake WJ, Moura ME. Cell-free production of sugars. US Patent US20180320210A1, 2017.
227.
Torretta S, Scagliola A, Ricci L, Mainini F, Di Marco S, Cuccovillo I, et al. D-mannose suppresses macrophage IL-1β production.  Nat. Commun. 2020, 11, 6343. [Google Scholar]
228.
Gonzalez PS, O’Prey J, Cardaci S, Barthet VJA, Sakamaki JI, Beaumatin F, et al. Mannose impairs tumour growth and enhances chemotherapy.  Nature 2018, 563, 719–723. [Google Scholar]
229.
Zhang D, Chia C, Jiao X, Jin W, Kasagi S, Wu R, et al. D-mannose induces regulatory T cells and suppresses immunopathology.  Nat. Med. 2017, 23, 1036–1045. [Google Scholar]
230.
Tian C, Yang J, Li Y, Zhang T, Li J, Ren C, et al. Artificially designed routes for the conversion of starch to value-added mannosyl compounds through coupling in vitro and in vivo metabolic engineering strategies.  Metab. Eng. 2020, 61, 215–224. [Google Scholar]
231.
Liu H, Xu Y, Zheng Z, Liu D. 1,3-Propanediol and its copolymers: research, development and industrialization.  Biotechnol. J. 2010, 5, 1137–1148. [Google Scholar]
232.
Nakamura CE, Whited GM. Metabolic engineering for the microbial production of 1,3-propanediol.  Curr. Opin. Biotech. 2003, 14, 454–459. [Google Scholar]
233.
Dietz D, Zeng A-P. Efficient production of 1,3-propanediol from fermentation of crude glycerol with mixed cultures in a simple medium.  Bioproc. Biosyst. Eng. 2014, 37, 225–233. [Google Scholar]
234.
Sabra W, Groeger C, Zeng AP. Microbial cell factories for diol production.  Adv. Biochem. Eng. Biotechnol. 2016, 155, 165–197. [Google Scholar]
235.
Celińska E. Debottlenecking the 1,3-propanediol pathway by metabolic engineering.  Biotechnol. Adv. 2010, 28, 519–530. [Google Scholar]
236.
Zeng A-P, Sabra W. Microbial production of diols as platform chemicals: Recent progresses. Curr. Opin. Biotechnol. 2011, 22, 749–757. [Google Scholar]
237.
Rieckenberg F, Ardao I, Rujananon R, Zeng A-P. Cell-free synthesis of 1,3-propanediol from glycerol with a high yield.  Eng. Life Sci. 2014, 14, 380–386. [Google Scholar]
238.
Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels.  Nature 2008, 451, 86–89. [Google Scholar]
239.
Hazelwood LA, Daran J-M, van Maris AJA, Pronk JT, Dickinson JR. The Ehrlich Pathway for Fusel Alcohol Production: a Century of Research on Saccharomyces cerevisiae Metabolism.  Appl. Environ. Microbiol. 2008, 74, 2259–2266. [Google Scholar]
240.
Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD. Microbial engineering for the production of advanced biofuels.  Nature 2012, 488, 320–328. [Google Scholar]
241.
Li S, Wen J, Jia X. Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Appl. Microbiol. Biotechnol. 2011, 91, 577–589. [Google Scholar]
242.
Smith K, Cho K-M, Liao J. Engineering Corynebacterium glutamicum for isobutanol production.  Appl. Microbiol. Biotechnol. 2010, 87, 1045–1055. [Google Scholar]
243.
Chen X, Nielsen K, Borodina I, Kielland-Brandt M, Karhumaa K. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism.  Biotechnol. Biofuels 2011, 4, 21. [Google Scholar]
244.
Atsumi S, Wu T-Y, Machado IMP, Huang W-C, Chen P-Y, Pellegrini M, et al. Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli Mol. Syst. Biol. 2010, 6, 449. [Google Scholar]
245.
Xie L, Wei X, Zhou X, Meng D, Zhou R, Zhang Y-HPJ, et al. Conversion of D-glucose to L-lactate via pyruvate by an optimized cell-free enzymatic biosystem containing minimized reactions.  Syn. Syst. Biotechnol. 2018, 3, 204–210. [Google Scholar]
246.
Ye X, Honda K, Morimoto Y, Okano K, Ohtake H. Direct conversion of glucose to malate by synthetic metabolic engineering.  J. Biotechnol. 2013, 164, 34–40. [Google Scholar]
247.
Choi C. Could Wood Feed the World? Science 2013. Available online: https://www.sciencemag.org/news/2013/2004/could-wood-feed-world (accessed on 20 May 2023).
248.
Somerville C, Youngs H, Taylor C, Davis SC, Long SP. Feedstocks for Lignocellulosic Biofuels.  Science 2010, 329, 790–792. [Google Scholar]
249.
Sheppard AW, Gillespie I, Hirsch M, Begley C. Biosecurity and sustainability within the growing global bioeconomy.  Curr. Opin. Environ. Sustain. 2011, 3, 4–10. [Google Scholar]
250.
Casillas CE, Kammen DM. The Energy-Poverty-Climate Nexus.  Science 2010, 330, 1181–1182. [Google Scholar]
251.
Zhang Y-HP, You C, Chen H, Feng R. Surpassing photosynthesis: High-efficiency and scalable CO2 utilization through artificial photosynthesis. In Recent Advances in Post-Combustion CO2 Capture Chemistry; ACS Publications: Washington, DC, USA, 2012; Volume 1097; pp. 275–292.
252.
Zhang Y-HP. A sweet out-of-the-box solution to the hydrogen economy: is the sugar-powered car science fiction?  Energy Environ. Sci. 2009, 2, 272–282. [Google Scholar]
253.
Harnisch F, Morejón MC. Hydrogen from Water is more than a Fuel: Hydrogenations and Hydrodeoxygenations for a Biobased Economy.  Chem. Rec. 2021, 21, 2277–2289. [Google Scholar]
254.
Dou Y, Sun L, Ren J, Dong L. Chapter 10—Opportunities and Future Challenges in Hydrogen Economy for Sustainable Development. In Hydrogen Economy; Academic Press Cambridge, MA, USA, 2017; pp. 277–305. 
255.
Tarascon J-M. Towards Sustainable and Renewable Systems for Electrochemical Energy Storage.  ChemSusChem 2008, 1, 777–779. [Google Scholar]
256.
Zhang Y-HP. What is vital (and not vital) to advance economically-competitive biofuels production.  Proc. Biochem. 2011, 46, 2091–2110. [Google Scholar]
257.
Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R. Methanogenic archaea: ecologically relevant differences in energy conservation.  Nat. Rev. Microbiol. 2008, 6, 579–591. [Google Scholar]
258.
Chheda J, Huber G, Dumesic J.  Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals.  Angew. Chem. Int. Ed. 2007, 46, 7164–7183. [Google Scholar]
259.
Huber GW, Shabaker JW, Dumesic JA. Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons.  Science 2003, 300, 2075–2077. [Google Scholar]
260.
Maeda T, Sanchez-Torres V, Wood TK. Hydrogen production by recombinant Escherichia coli strains.  Microb. Biotechnol. 2012, 5, 214–225. [Google Scholar]
261.
Maeda T, Sanchez-Torres V, Wood TK. Metabolic engineering to enhance bacterial hydrogen production.  Microb. Biotechnol. 2008, 1, 30–39. [Google Scholar]
262.
Ye X, Wang Y, Hopkins RC, Adams MWW, Evans BR, Mielenz JR, et al. Spontaneous high-yield production of hydrogen from cellulosic materials and water catalyzed by enzyme cocktails.  ChemSusChem 2009, 2, 149–152. [Google Scholar]
263.
Myung S, Rollin J, You C, Sun F, Chandrayan S, Adams MWW, Zhang Y-HP. In vitro metabolic engineering of hydrogen production at theoretical yield from sucrose.  Metab. Eng. 2014, 24, 70–77. [Google Scholar]
264.
Rollin JA, Ye XH, Martin dCJS, Adams MWW, Zhang Y-HP. Novel hydrogen detection apparatus along with bioreactor Systems. In Bioreactor Engineering Research and Industrial Applications II; Springer: Berlin/Heidelberg, 2016.
265.
Martín del Campo JS, Rollin J, Myung S, Chun Y, Chandrayan S, Patiño R, et al. High-Yield Production of Dihydrogen from Xylose by Using a Synthetic Enzyme Cascade in a Cell-Free System.  Angew. Chem. Int. Ed. 2013, 52, 4587–4590. [Google Scholar]
266.
Berezina OV, Zverlov VV, Lunina NA, Chekanovskaya LA, Dubinina EN, Liebl W, et al. Gene and properties of thermostable 4-α-glucanotransferase of Thermotoga neapolitana Mol. Biol. 1999, 33, 801–806. [Google Scholar]
267.
Chen H, Huang R, Kim E-J, Zhang Y-HPJ. Building a thermostable metabolon for facilitating coenzyme transport and in vitro hydrogen production at elevated temperature.  ChemSusChem 2018, 11, 3020–3030. [Google Scholar]
268.
Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, et al. Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation.  Proc. Natl. Acad. Sci. USA 2008, 105, 10949–10954. [Google Scholar]
269.
Alexander JK. Purification and specificity of cellobiose phosphorylase from Clostridium thermocellum J. Biol. Chem. 1968, 243, 2899–2904. [Google Scholar]
270.
Myung S, Zhang X-Z, Zhang Y-HP. Ultra-stable phosphoglucose isomerase through immobilization of cellulose-binding module-tagged thermophilic enzyme on low-cost high-capacity cellulosic adsorbent.  Biotechnol. Prog. 2011, 27, 969–975. [Google Scholar]
271.
Verhaeghe T, Aerts D, Diricks M, Soetaert W, Desmet T. The quest for a thermostable sucrose phosphorylase reveals sucrose 6′-phosphate phosphorylase as a novel specificity.  Appl. Microbiol. Biotechnol. 2014, 98, 7027–7037. [Google Scholar]
272.
Nazina T, Tourova T, Poltaraus A, Novikova E, Grigoryan A, Ivanova A, et al. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans Int. J. Syst. Evol. Microbiol. 2001, 51, 433–446. [Google Scholar]
273.
Zhang S, Yan L, Xing W, Chen P, Zhang Y, Wang W. Acidithiobacillus ferrooxidans and its potential application.  Extremophiles 2018, 22, 563–579. [Google Scholar]
274.
Quatrini R, Johnson DB. Acidithiobacillus ferrooxidans Trends Microbiol. 2019, 27, 282–283. [Google Scholar]
275.
Klenk H-P, Clayton RA, Tomb J-F, White O, Nelson KE, Ketchum KA, et al. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus Nature 1997, 390, 364–370. [Google Scholar]
276.
Chen L, Zhou C, Yang H, Roberts MF. Inositol-1-phosphate synthase from Archaeoglobus fulgidus is a class II aldolase.  Biochemistry 2000, 39, 12415–12423. [Google Scholar]
277.
Wang Y, Xu H, White RH.  β-alanine biosynthesis in Methanocaldococcus jannaschii J. Bacteriol. 2014, 196, 2869–2875. [Google Scholar]
278.
Graham DE, Kyrpides N, Anderson IJ, Overbeek R, Whitman WB. Genome of Methanocaldococcus (Methanococcus) jannaschii Methods Enzymol. 2001, 330, 40–123. [Google Scholar]
279.
Kawarabayasi Y, Hino Y, Horikawa H, Jin-no K, Takahashi M, Sekine M, et al. Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain 7.  DNA Res. 2001, 8, 123–140. [Google Scholar]
280.
Schut GJ, Lipscomb GL, Han Y, Notey JS, Kelly RM, Adams MMW. The order thermococcales and the family Thermococcaceae. In The Prokaryotes: Other Major Lineages of Bacteria and The Archaea; Springer: Berlin/Heidelberg, Germany, 2014; pp. 363–383.
281.
Kengen SWM. Pyrococcus furiosus, 30 years on.  Microb. Biotechnol. 2017, 10, 1441–1444. [Google Scholar]
282.
Suryatin Alim G, Iwatani T, Okano K, Kitani S, Honda K. In vitro production of coenzyme A using thermophilic enzymes.  Appl. Environ. Microbiol. 2021, 87, e0054121. [Google Scholar]
283.
Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, et al. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima Nature 1999, 399, 323–329. [Google Scholar]
284.
Cava F, Hidalgo A, Berenguer J. Thermus thermophilus as biological model.  Extremophiles 2009, 13, 213–231. [Google Scholar]
285.
Lioliou E, Pantazaki A, Kyriakidis D. Thermus thermophilus genome analysis: benefits and implications.  Microb. Cell Fact. 2004, 3, 5. [Google Scholar]
286.
Aono R, Sato T, Imanaka T, Atomi H. A pentose bisphosphate pathway for nucleoside degradation in Archaea.  Nat. Chem. Biol. 2015, 11, 355–360. [Google Scholar]
287.
Rashid N, Aslam M. An overview of 25 years of research on Thermococcus kodakarensis, a genetically versatile model organism for archaeal research.  Folia Microbiol. 2020, 65, 67–78. [Google Scholar]
288.
Santangelo TJ, Cubonová Lu, Reeve JN. Thermococcus kodakarensis genetics: TK1827-encoded beta-glycosidase, new positive-selection protocol, and targeted and repetitive deletion technology.  Appl. Environ. Microbiol. 2010, 76, 1044–1052. [Google Scholar]
289.
Farkas JA, Picking JW, Santangelo TJ. Genetic techniques for the archaea.  Annu. Rev. Genet. 2013, 47, 539–561. [Google Scholar]
290.
Given L, Gershenson A, Freskgard P-O, Arnold FH. Directed evolution of a thermostable esterase.  Proc. Natl. Acad. Sci. USA 1998, 95, 12809–12813. [Google Scholar]
291.
Liu W, Zhang X-Z, Zhang Z-M, Zhang Y-HP. Engineering of Clostridium phytofermentans endoglucanase Cel5A for improved thermostability.  Appl. Environ. Microbiol. 2010, 76, 4914–4917. [Google Scholar]
292.
Wu Z, Kan SBJ, Lewis RD, Wittmann BJ, Arnold FH. Machine learning-assisted directed protein evolution with combinatorial libraries.  Proc. Natl. Acad. Sci. USA 2019, 116, 8852–8858. [Google Scholar]
293.
Yang KK, Wu Z, Arnold FH. Machine-learning-guided directed evolution for protein engineering.  Nat. Methods 2019, 16, 687–694. [Google Scholar]
294.
Porebski BT, Buckle AM. Consensus protein design.  Protein Eng. Des. Sel. 2016, 29, 245–251. [Google Scholar]
295.
Goldenzweig A, Fleishman SJ. Principles of protein stability and their application in computational design.  Annu. Rev. Biochem. 2018, 87, 105–129. [Google Scholar]
296.
Cerdobbel A, Desmet T, De Winter K, Maertens J, Soetaert W. Increasing the thermostability of sucrose phosphorylase by multipoint covalent immobilization.  J. Biotechnol. 2010, 150, 125–130. [Google Scholar]
297.
Cerdobbel A, De Winter K, Aerts D, Kuipers R, Joosten HJ, Soetaert W, et al. Increasing the thermostability of sucrose phosphorylase by a combination of sequence- and structure-based mutagenesis.  Protein Eng. Des. Sel. 2011, 24, 829–834. [Google Scholar]
298.
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with ΑFold.  Nature 2021, 596, 583–589. [Google Scholar]
299.
Li G, Qin Y, Fontaine NT, Ng Fuk Chong M, Maria-Solano MA, Feixas F, et al. Machine Learning Enables Selection of Epistatic Enzyme Mutants for Stability Against Unfolding and Detrimental Aggregation.  Chembiochem 2021, 22, 904–914. [Google Scholar]
300.
Siedhoff NE, Schwaneberg U, Davari MD. Machine learning-assisted enzyme engineering.  Methods Enzymol. 2020, 643, 281–315. [Google Scholar]
301.
Demain AL, Vaishnav P. Production of recombinant proteins by microbes and higher organisms.  Biotechnol. Adv. 2009, 27, 297–306. [Google Scholar]
302.
Su Y, Liu C, Fang H, Zhang D. Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine.  Microb. Cell Fact. 2020, 19, 173. [Google Scholar]
303.
Ngalimat MS, Yahaya RSR, Baharudin MMA, Yaminudin SM, Karim M, Ahmad SA, et al. A review on the biotechnological applications of the operational group Bacillus amyloliquefaciens Microorganisms 2021, 9, 614. [Google Scholar]
304.
Liu S, Wang J, Zhu Z, Shi T, Zhang Y-HPJ. Efficient secretory production of large-size heterologous enzymes in Bacillus subtilis: A secretory partner and directed evolution.  Biotechnol. Bioeng. 2020, 117, 2957–2968. [Google Scholar]
305.
Zhang Y-HP, Himmel M, Mielenz JR. Outlook for cellulase improvement: Screening and selection strategies.  Biotechnol. Adv. 2006, 24, 452–481. [Google Scholar]
306.
Tangnu SK, Blanch HW, Wilke CR. Enhanced production of cellulase, hemicellulase, and β-glucosidase by Trichoderma reesei (Rut C-30).  Biotechnol. Bioeng. 1981, 23, 1837–1849. [Google Scholar]
307.
Spohner SC, Müller H, Quitmann H, Czermak P. Expression of enzymes for the usage in food and feed industry with Pichia pastoris J. Biotechnol. 2015, 202, 118–134. [Google Scholar]
308.
Niu C, Yang P, Luo H, Huang H, Wang Y, Yao B. Engineering of Yersinia Phytases to Improve Pepsin and Trypsin Resistance and Thermostability and Application Potential in the Food and Feed Industry.  J. Agric. Food Chem. 2017, 65, 7337–7344. [Google Scholar]
309.
Ueno S, Miyama M, Ohashi Y, Izumiya M, Kusaka I. Secretory enzyme production and conidiation of Aspergillus oryzae in submerged liquid culture.  Appl. Microbiol. Biotechnol. 1987, 26, 273–276. [Google Scholar]
310.
Barnard G, Henderson G, Srinivasan S, Gerngross T. High level recombinant protein expression in Ralstonia eutropha using T7 RNA polymerase based amplification.  Protein Expr. Purif. 2004, 38, 264–271. [Google Scholar]
311.
Hartley JL. Cloning technologies for protein expression and purification.  Curr. Opin. Biotechnol. 2006, 17, 359–366. [Google Scholar]
312.
Galloway CA, Sowden MP, Smith HC. Increasing the yield of soluble recombinant protein expressed in E. coli by induction during late log phase.  Biotechniques 2003, 34, 524–526. [Google Scholar]
313.
Kaur J, Kumar A, Kaur J. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements.  Int. J. Biol. Macromol. 2018, 106, 803–822. [Google Scholar]
314.
Ki MR, Pack SP. Fusion tags to enhance heterologous protein expression.  Appl. Microbiol. Biotechnol. 2020, 104, 2411–2425. [Google Scholar]
315.
Zhong C, Wei P, Zhang Y-HP. Enhancing functional expression of codon-optimized heterologous enzymes in Escherichia coli BL21(DE3) by selective introduction of synonymous rare codons.  Biotechnol. Bioeng. 2017, 114, 1054–1064. [Google Scholar]
316.
Martínez-Alonso M, García-Fruitós E, Ferrer-Miralles N, Rinas U, Villaverde A. Side effects of chaperone gene co-expression in recombinant protein production.  Microb. Cell Fact. 2010, 9, 64. [Google Scholar]
317.
Lin Z, Thorsen T, Arnold FH. Functional expression of horseradish peroxidase in E. coli by directed evolution.  Biotechnol. Prog. 2000, 16, 467–471. [Google Scholar]
318.
Ye J, Li YJ, Bai YQ, Zhang T, Jiang W, Shi T, et al. A facile and robust T7-promoter-based high-expression of heterologous proteins in Bacillus subtilis Biores. Bioproc. 2022, 9, 1–12. [Google Scholar]
319.
Sun FF, Zhang XZ, Myung S, Zhang Y-HP. Thermophilic Thermotoga maritima ribose-5-phosphate isomerase RpiB: Optimized heat treatment purification and basic characterization.  Protein Expr. Purif. 2012, 82, 302–307. [Google Scholar]
320.
Ye X, Honda K, Sakai T, Okano K, Omasa T, Hirota R, et al. Synthetic metabolic engineering—a novel, simple technology for designing a chimeric metabolic pathway.  Microb. Cell Fact. 2012, 11, 120. [Google Scholar]
321.
You C, Zhang Y-HP. Self-assembly of synthetic metabolons through synthetic protein scaffolds: one-step purification, co-immobilization, and substrate channeling.  ACS Syn. Biol. 2013, 2, 102–110. [Google Scholar]
322.
Liu M, Song Y, Zhang Y-HPJ, You C. Carrier-free immobilization of multi-enzyme complex facilitates in vitro synthetic enzymatic biosystem for biomanufacturing.  ChemSusChem 2023, 16, e202202153. [Google Scholar]
323.
Krutsakorn B, Imagawa T, Honda K, Okano K, Ohtake H. Construction of an in vitro bypassed pyruvate decarboxylation pathway using thermostable enzyme modules and its application to N-acetylglutamate production.  Microb. Cell Fact. 2013, 12, 91. [Google Scholar]
324.
Krutsakorn B, Honda K, Ye X, Imagawa T, Bei X, Okano K, et al. In vitro production of N-butanol from glucose.  Metab. Eng. 2013, 20, 84–91. [Google Scholar]
325.
Ninh PH, Honda K, Sakai T, Okano K, Ohtake H. Assembly and Multiple Gene Expression of Thermophilic Enzymes in Escherichia coli for In Vitro Metabolic Engineering.  Biotechnol. Bioeng. 2015, 112, 189–196. [Google Scholar]
326.
Potapov V, Ong JL.  Examining sources of error in PCR by single-molecule sequencing.  PLoS ONE 2017, 12, e0169774. [Google Scholar]
327.
Sankar PS, Citartan M, Siti AA, Skryabin BV, Rozhdestvensky TS, Khor GH, et al. A simple method for in-house Pfu DNA polymerase purification for high-fidelity PCR amplification.  Iran J. Microbiol. 2019, 11, 181–186. [Google Scholar]
328.
Mielenz JR. Bacillus stearothermophilus contains a plasmid-borne gene for α-amylase.  Proc. Natl. Acad. Sci. USA 1983, 80, 5975–5979. [Google Scholar]
329.
Zhao H, Arnold FH. Directed evolution converts subtilisin E into a functional equivalent of thermitase. Protein Eng. 1999, 12, 47–53. [Google Scholar]
330.
Cao L, Langen Lv, Sheldon RA. Immobilised enzymes: carrier-bound or carrier-free?  Curr. Opin. Biotechnol. 2003, 14, 387–394. [Google Scholar]
331.
Li H, Sethuraman N, Stadheim TA, Zha D, Prinz B, Ballew N, et al. Optimization of humanized IgGs in glycoengineered Pichia pastoris Nat. Biotechnol. 2006, 24, 210–215. [Google Scholar]
332.
Schwarz FM, Schuchmann K, Müller V. Hydrogenation of CO2 at ambient pressure catalyzed by a highly active thermostable biocatalyst.  Biotechnol. Biofuels 2018, 11, 237. [Google Scholar]
333.
Liu W, Wang P. Cofactor regeneration for sustainable enzymatic biosynthesis.  Biotechnol. Adv. 2007, 25, 369–384. [Google Scholar]
334.
Kazandjian R, Klibanov A. Regioselective oxidation of phenols catalyzed by polyphenol oxidase in chloroform.  J. Am. Chem. Soc. 1985, 107, 5448–5450. [Google Scholar]
335.
Li Y, Liu S, You C. Permeabilized Escherichia coli whole cells containing co-expressed two thermophilic enzymes facilitate the synthesis of scyllo-inositol from myo-inositol.  Biotechnol. J. 2020, 15, 1900191. [Google Scholar]
336.
Ryan JD, Fish RH, Clark DS. Engineering cytochrome P450 enzymes for improved activity towards biomimetic 1,4-NADH cofactors.  ChemBioChem 2008, 9, 2579–2582. [Google Scholar]
337.
Campbell E, Wheeldon IR, Banta S. Broadening the cofactor specificity of a thermostable alcohol dehydrogenase using rational protein design introduces novel kinetic transient behavior.  Biotechnol. Bioeng. 2010, 107, 763–774. [Google Scholar]
338.
Zachos I, Döring M, Tafertshofer G, Simon RC, Sieber V. carba nicotinamide adenine dinucleotide phosphate: robust cofactor for redox niocatalysis.  Angew. Chem. Int. Ed. 2021, 60, 14701–14706. [Google Scholar]
339.
Ma K, Adams MW. Hydrogenases I and II from Pyrococcus furiosus Methods Enzymol. 2001, 331, 208–216. [Google Scholar]
340.
Stiefel EI, George GN. Ferredoxins, hydrogenases, and nitrogenases: Metal-sulfide proteins. In Bioinorganic Chemistry; University Science Books: Melville, NY, USA, 1994; pp. 365–453.
341.
Schoelmerich MC, Müller V. Energy-converting hydrogenases: the link between H2 metabolism and energy conservation.  Cell Mol. Life Sci. 2020, 77, 1461–1481. [Google Scholar]
342.
Peters JW, Schut GJ, Boyd ES, Mulder DW, Shepard EM, Broderick JB, et al. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation.  Biochim. Biophys. Acta 2015, 1853, 1350–1369. [Google Scholar]
343.
DosSantos PC, Dean DR, Hu Y, Ribbe MW. Formation and insertion of the nitrogenase iron-molybdenum cofactor.  Chem. Rev. 2004, 104, 1159–1174. [Google Scholar]
344.
Schuchmann K, Müller V. Direct and Reversible Hydrogenation of CO2 to Formate by a Bacterial Carbon Dioxide Reductase.  Science 2013, 342, 1382–1385. [Google Scholar]
345.
Dietrich HM, Righetto RD, Kumar A, Wietrzynski W, Trischler R, Schuller SK, et al. Membrane-anchored HDCR nanowires drive hydrogen-powered CO2 fixation.  Nature 2022, 607, 823–830. [Google Scholar]
346.
Leo F, Schwarz FM, Schuchmann K, Müller V. Capture of carbon dioxide and hydrogen by engineered Escherichia coli: hydrogen-dependent CO2 reduction to formate. Appl. Microbiol. Biotechnol. 2021, 105, 5861–5872. [Google Scholar]
347.
Rieckenberg F, Götz K, Hilterhaus L, Liese A, Zeng A-P. Strategies for reliable and improved large-scale production of Pyrococcus furiosus with integrated purification of hydrogenase I. Bioproc. Biosys. Eng. 2014, 37, 2475–2482. [Google Scholar]
348.
Ma K, Schicho RN, Kelly RM, Adams MWW. Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: Evidence for a sulfur-reducing hydrogenase ancestor.  Proc. Natl. Acad. Sci. USA 1993, 90, 5341–5344. [Google Scholar]
349.
Chandrayan SK, McTernan PM, Hopkins RC, Sun JS, Jenney FE, Adams MWW. Engineering hyperthermophilic Archaeon Pyrococcus furiosus to overproduce Its cytoplasmic NiFe -hydrogenase.  J. Biol. Chem. 2012, 287, 3257–3264. [Google Scholar]
350.
Wu C-H, Ponir CA, Haja DK, Adams MWW. Improved production of the NiFe-hydrogenase from Pyrococcus furiosus by increased expression of maturation genes.  Protein Eng. Des. Sel. 2018, 31, 337–344. [Google Scholar]
351.
Sun J, Hopkins RC, Jenney FE, McTernan PM, Adams MWW. Heterologous expression and maturation of an NADP-dependent [NiFe]-hydrogenase: a key enzyme in biofuel production.  PLoS ONE 2010, 5, e10526. [Google Scholar]
352.
Onoda A, Hayashi T. Artificial hydrogenase: biomimetic approaches controlling active molecular catalysts.  Curr. Opin. Chem. Biol. 2015, 25, 133–140. [Google Scholar]
353.
Pan H-J, Huang G, Wodrich MD, Tirani FF, Ataka K, Shima S, et al. A catalytically active [Mn]-hydrogenase incorporating a non-native metal cofactor.  Nat. Chem. 2019, 11, 669–675. [Google Scholar]
354.
Schaupp S, Arriaza-Gallardo FJ, Pan HJ, Kahnt J, Angelidou G, Paczia N, et al. In Vitro Biosynthesis of the [Fe]-Hydrogenase Cofactor Verifies the Proposed Biosynthetic Precursors.  Angew. Chem. Int. Ed. 2022, 61, e202200994. [Google Scholar]
355.
Zhang Y, Muhammad F, Wei H. Inorganic enzyme mimics.  ChemBioChem 2021, 22, 1496–1498. [Google Scholar]
356.
Ye N, Kou X, Shen J, Huang S, Chen G, Ouyang G. Metal-organic frameworks: A new platform for enzyme immobilization.  ChemBioChem 2020, 21, 2585–2590. [Google Scholar]
357.
Liang W, Wied P, Carraro F, Sumby CJ, Nidetzky B, Tsung CK, et al. Metal-organic framework-based enzyme biocomposites.  Chem. Rev. 2021, 121, 1077–1129. [Google Scholar]
358.
Oliveira FL, de SFA, de Castro AM, Alves de Souza ROM, Esteves PM, Gonçalves RSB. Enzyme Immobilization in Covalent Organic Frameworks: Strategies and Applications in Biocatalysis.  Chempluschem 2020, 85, 2051–2066. [Google Scholar]
359.
Sicard C. In situ enzyme immobilization by covalent organic frameworks.  Angew. Chem. Int. Ed. 2023, 135, e202213405. [Google Scholar]
360.
Sheldon RA, van Pelt S. Enzyme immobilisation in biocatalysis: why, what and how.  Chem. Soc. Rev. 2013, 21, 6223–6235. [Google Scholar]
361.
Ansorge-Schumacher MB, Thum O. Immobilised lipases in the cosmetics industry.  Chem. Soc. Rev. 2013, 42, 6475–6490. [Google Scholar]
362.
Betancor L, Berne C, Luckarift HR, Spain JC. Coimmobilization of a redox enzyme and a cofactor regeneration system.  Chem. Commun. 2006, 34, 3640–3642. [Google Scholar]
363.
El-Zahab B, Jia H, Wang P. Enabling multienzyme biocatalysis using nanoporous materials.  Biotechnol. Bioeng. 2004, 87, 178–183. [Google Scholar]
364.
Mateo C, Chmura A, Rustler S, van Rantwijk F, Stolz A, Sheldon RA. Synthesis of enantiomerically pure (S)-mandelic acid using an oxynitrilase-nitrilase bienzymatic cascade: a nitrilase surprisingly shows nitrile hydratase activity.  Tetrahedron: Asymmetry 2006, 17, 320–323. [Google Scholar]
365.
Myung S, You C, Zhang Y-HP. Recyclable cellulose-containing magnetic nanoparticles: immobilization of cellulose-binding module-tagged proteins and synthetic metabolon featuring substrate channeling.  J. Mater. Chem. B 2013, 1, 4419–4427. [Google Scholar]
366.
Jandt U, You C, Zhang Y-HP, Zeng AP. Compartmentalization and Metabolic Channeling for Multienzymatic Biosynthesis: Practical Strategies and Modeling Approaches.  Adv. Biochem. Eng. Biotechnol. 2013, 137, 1–25. [Google Scholar]
367.
Conrado RJ, Varner JD, DeLisa MP. Engineering the spatial organization of metabolic enzymes: Mimicking nature’s synergy.  Curr. Opin. Biotechnol. 2008, 19, 492–499. [Google Scholar]
368.
Bulow L, Ljungcrantz P, Mosbach K.  Preparation of a soluble bifunctional enzyme by gene fusion.  Nat. Biotechnol. 1985, 3, 821–823. [Google Scholar]
369.
Liu X, Hou H, Li Y, Yang S, Lin H, Chen H. Fusion of cellobiose phosphorylase and potato α-glucan phosphorylase facilitates substrate channeling for enzymatic conversion of cellobiose to starch.  Prep. Biochem. Biotechnol. 2022, 52, 611–617. [Google Scholar]
370.
Riedel K, Bronnenmeier K. Intramolecular synergism in an engineered exo-endo-1,4-b-glucanase fusion protein.  Mol. Microbiol. 1998, 28, 767–775. [Google Scholar]
371.
Orita I, Sakamoto N, Kato N, Yurimoto H, Sakai Y. Bifunctional enzyme fusion of 3-hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase.  Appl. Microbiol. Biotechnol. 2007, 76, 439–445. [Google Scholar]
372.
Agapakis C, Ducat D, Boyle P, Wintermute E, Way J, Silver P. Insulation of a synthetic hydrogen metabolism circuit in bacteria.  J. Biol. Eng. 2010, 4, 3. [Google Scholar]
373.
Meynial-Salles I, Forchhammer N, Croux C, Girbal L, Soucaille P. Evolution of a Saccharomyces cerevisiae metabolic pathway in Escherichia coli Metab. Eng. 2007, 9, 152–159. [Google Scholar]
374.
Chang H-C, Kaiser CM, Hartl FU, Barral JM. De novo Folding of GFP Fusion Proteins: High Efficiency in Eukaryotes but Not in Bacteria.  J. Mol. Biol. 2005, 353, 397–409. [Google Scholar]
375.
Aldaye FA, Palmer AL, Sleiman HF. Assembling Materials with DNA as the Guide.  Science 2008, 321, 1795–1799. [Google Scholar]
376.
Wei B, Dai M, Yin P. Complex shapes self-assembled from single-stranded DNA tiles.  Nature 2012, 485, 623–626. [Google Scholar]
377.
Bayer EA, Morag E, Lamed R. The cellulosome--a treasure-trove for biotechnology.  Trends Biotechnol. 1994, 12, 379–386. [Google Scholar]
378.
Reddington SC, Howarth M. Secrets of a covalent interaction for biomaterials and biotechnology: SpyTag and SpyCatcher.  Curr. Opin. Chem. Biol. 2015, 29, 94–99. [Google Scholar]
379.
Kang W, Ma T, Liu M, Qu J, Liu Z, Zhang H, et al. Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux.  Nat. Commun. 2019, 10, 4248. [Google Scholar]
380.
Gao X, Yang S, Zhao C, Ren Y, Wei D. Artificial multienzyme supramolecular device: Highly ordered self-assembly of oligomeric enzymes in vitro and in vivo.  Angew. Chem. Int. Ed. 2014, 126, 14251–14254. [Google Scholar]
381.
Zhu G, Song P, Wu J, Luo M, Chen Z, Chen T. Application of nucleic acid frameworks in the construction of nanostructures and cascade biocatalysts: Recent progress and perspective. Front. Bioeng. Biotechnol. 2021, 9, 792489. [Google Scholar]
382.
Zhang L, Ahvazi B, Szittner R, Vrielink A, Meighen E. Change of nucleotide specificity and enhancement of catalytic efficiency in single point mutants of Vibrio harveyi aldehyde dehydrogenase.  Biochemistry 1999, 38, 11440–11447. [Google Scholar]
383.
Yaoi T, Miyazaki K, Oshima T, Komukai Y, Go M. Conversion of the coenzyme specificity of isocitrate dehydrogenase by module replacement.  J. Biochem. 1996, 119, 1014–1018. [Google Scholar]
384.
Bastian S, Liu X, Meyerowitz JT, Snow CD, Chen MMY, Arnold FH. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli Metab. Eng. 2011, 13, 345–352. [Google Scholar]
385.
Rosell A, Valencia E, Ochoa WF, Fita I, Pares X, Farres J. Complete Reversal of Coenzyme Specificity by Concerted Mutation of Three Consecutive Residues in Alcohol Dehydrogenase.  J. Biol. Chem. 2003, 278, 40573–40580. [Google Scholar]
386.
Döhr O, Paine MJI, Friedberg T, Roberts GCK, Wolf CR. Engineering of a functional human NADH-dependent cytochrome P450 system.  Proc. Nat. Acad. Sci. USA 2001, 98, 81–86. [Google Scholar]
387.
Banta S, Swanson BA, Wu S, Jarnagin A, Anderson S. Alteration of the specificity of the cofactor-binding pocket of Corynebacterium  2,5-diketo- D-gluconic acid reductase A.  Protein Eng. Des. Sel. 2002, 15, 131–140. [Google Scholar]
388.
Banta S, Swanson BA, Wu S, Jarnagin A, Anderson S. Optimizing an artificial metabolic pathway: Engineering the cofactor specificity of Corynebacterium 2,5-Diketo- D-gluconic acid reductase for use in vitamin C biosynthesis.  Biochemistry 2002, 41, 6226–6236. [Google Scholar]
389.
Bocanegra JA, Scrutton NS, Perham RN. Creation of an NADP-dependent pyruvate dehydrogenase multienzyme complex by protein engineering.  Biochemistry 1993, 32, 2737–2740. [Google Scholar]
390.
Mittl PRE, Berry A, Scrutton NS, Perham RN, Schulz GE. Structural differences between wild-type NADP-dependent glutathione reductase from Escherichia coli and a redesigned NAD-dependent mutant. J. Mol. Biol. 1993, 231, 191–195. [Google Scholar]
391.
Steen IH, Lien T, Madsen MS, Birkeland N-K. Identification of cofactor discrimination sites in NAD-isocitrate dehydrogenase from Pyrococcus furiosus Arch. Microbiol. 2002, 178, 297–300. [Google Scholar]
392.
Watanabe S, Kodaki T, Makino K. Complete Reversal of Coenzyme Specificity of Xylitol Dehydrogenase and Increase of Thermostability by the Introduction of Structural Zinc.  J. Biol.Chem. 2005, 280, 10340–10349. [Google Scholar]
393.
Glykys DJ, Banta S. Metabolic control analysis of an enzymatic biofuel cell.  Biotechnol. Bioeng. 2009, 102, 1624–1635. [Google Scholar]
394.
Woodyer RD, van der Donk WA, Zhao H. Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design.  Biochemistry 2003, 42, 11604–11614. [Google Scholar]
395.
Wiegert T, Sahm H, Sprenger GA. The Substitution of a Single Amino Acid Residue (Ser-116 → Asp) Alters NADP-containing Glucose-Fructose Oxidoreductase of Zymomonas mobilis into a Glucose Dehydrogenase with Dual Coenzyme Specificity.  J. Biol. Chem. 1997, 272, 13126–13133. [Google Scholar]
396.
Katzberg M, Skorupa-Parachin N, Gorwa-Grauslund M-F, Bertau M. Engineering Cofactor Preference of Ketone Reducing Biocatalysts: A Mutagenesis Study on a γ-Diketone Reductase from the Yeast Saccharomyces cerevisiae Serving as an Example.  Int. J. Mol. Sci. 2010, 11, 1735–1758. [Google Scholar]
397.
Sanli G, Banta S, Anderson S, Blaber M. Structural alteration of cofactor specificity in Corynebacterium 2,5-diketo- D-gluconic acid reductase.  Protein Eng. 2004, 13, 504–512. [Google Scholar]
398.
Paul CE, Arends IWCE, Hollmann F. Is simpler better? Synthetic nicotinamide cofactor analogues for redox chemistry.  ACS Catal. 2014, 4, 788–797. [Google Scholar]
399.
Knaus T, Paul CE, Levy CW, de Vries S, Mutti FG, Hollmann F, et al. Better than Nature: Nicotinamide Biomimetics That Outperform Natural Coenzymes.  J. Am. Chem. Soc. 2016, 138, 1033–1039. [Google Scholar]
400.
Zachos I, Nowak C, Sieber V. Biomimetic cofactors and methods for their recycling.  Curr. Opin. Chem. Biol. 2019, 49, 59–66. [Google Scholar]
401.
Nowak C, Pick A, Csepei LI, Sieber V. Characterization of Biomimetic Cofactors According to Stability, Redox Potentials, and Enzymatic Conversion by NADH Oxidase from Lactobacillus pentosus.  ChemBioChem 2017, 18, 1944–1949. [Google Scholar]
402.
Ji D, Wang L, Hou S, Liu W, Wang J, Wang Q, et al. Creation of bioorthogonal redox systems depending on nicotinamide flucytosine dinucleotide.  J. Am. Chem. Soc. 2011, 133, 20857–20862. [Google Scholar]
403.
Wang X, Feng Y, Guo X, Wang Q, Ning S, Li Q, et al. Creating enzymes and self-sufficient cells for biosynthesis of the non-natural cofactor nicotinamide cytosine dinucleotide.  Nat. Commun. 2021, 12, 2116. [Google Scholar]
404.
Guarneri A, van Berkel WJ, Paul CE. Alternative coenzymes for biocatalysis.  Curr. Opin. Biotechnol. 2019, 60, 63–71. [Google Scholar]
405.
Toogood HS, Scrutton NS. Discovery, characterisation, engineering and applications of ene reductases for industrial biocatalysis.  ACS Catal. 2019, 8, 3532–3549. [Google Scholar]
406.
Paul CE, Gargiulo S, Opperman DJ, Lavandera I, Gotor-Fernández V, Gotor V, et al. Mimicking nature: synthetic nicotinamide cofactors for C=C bioreduction using enoate reductases.  Org. Lett. 2013, 15, 180–183. [Google Scholar]
407.
Nowak C, Beer B, Pick A, Roth T, Lommes P, Sieber V. A water-forming NADH oxidase from Lactobacillus pentosus suitable for the regeneration of synthetic biomimetic cofactors.  Front. Microbiol. 2015, 6, 957. [Google Scholar]
408.
Campbell E, Meredith M, Minteer SD, Banta S. Enzymatic biofuel cells utilizing a biomimetic cofactor.  Chem. Commun. 2012, 48, 1898–1900. [Google Scholar]
409.
Lo HC, Fish RH. Biomimetic NAD+ models for tandem cofactor regeneration, horse liver alcohol dehydrogenase recognition of 1,4-NADH derivatives, and chiral synthesis.  Angew. Chem. Int. Ed. 2002, 41, 478–481. [Google Scholar]
410.
Paul CE, Hollmann F. A survey of synthetic nicotinamide cofactors in enzymatic processes.  Appl. Microbiol. Biotechnol. 2016, 100, 4773–4778. [Google Scholar]
411.
Fisher HF, McGregor LL. The ability of reduced nicotinamide mononucleotide to function as a hydrogen donor in the glutamic dehydrogenase reaction.  Biochem. Biophys. Res. Commun. 1969, 34, 627–632. [Google Scholar]
412.
Sicsic S, Durand P, Langrene S, Goffic FL. Activity of NMN+, nicotinamide ribose and analogs in alcohol oxidation promoted by horse-liver alcohol dehydrogenase. Eur. J. Biochem. 1986, 155, 403–407. [Google Scholar]
413.
Black WB, Zhang L, Mak WS, Maxel S, Cui Y, King E, et al. Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis. Nat. Chem. Biol. 2020, 16, 87–94. [Google Scholar]
414.
Zhang L, King E, Black WB, Heckmann CM, Wolder A, Cui Y, et al. Directed evolution of phosphite dehydrogenase to cycle noncanonical redox cofactors via universal growth selection platform.  Nat. Commun. 2022, 13, 5021. [Google Scholar]
415.
Li F, Wei X, Zhang L, Liu C, You C, Zhu Z. Installing a green engine to drive an enzyme cascade: A light-powered In vitro biosystem for poly(3-hydroxybutyrate) synthesis.  Angew. Chem. Int. Ed. 2022, 61, e202111054. [Google Scholar]
416.
Miller TE, Beneyton T, Schwander T, Diehl C, Girault M, McLean R, et al. Light-powered CO2 fixation in a chloroplast mimic with natural and synthetic parts.  Science 2020, 368, 649–654. [Google Scholar]
417.
Zhong C, Wei P, Zhang Y-HP. A kinetic model of one-pot rapid biotransformation of cellobiose from sucrose catalyzed by three thermophilic enzymes. Chem. Eng. Sci. 2017, 161, 159–166. [Google Scholar]
418.
Ardao I, Zeng A-P. In silico evaluation of a complex multi-enzymatic system using one-pot and modular approaches: Application to the high-yield production of hydrogen from a synthetic metabolic pathway.  Chem. Eng. Sci. 2013, 87, 183–193. [Google Scholar]
419.
Yamamoto T, Hoshikawa K, Ezura K, Okazawa R, Fujita S, Takaoka M, et al. Improvement of the transient expression system for production of recombinant proteins in plants.  Sci. Rep. 2018, 8, 4755. [Google Scholar]
420.
Krenek P, Samajova O, Luptovciak I, Doskocilova A, Komis G, Samaj J. Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications.  Biotechnol. Adv. 2015, 33, 1024–1042. [Google Scholar]
421.
Dugdale B, Mortimer CL, Kato M, James TA, Harding RM, Dale JL. Design and construction of an in-plant activation cassette for transgene expression and recombinant protein production in plants.  Nat. Protoc. 2014, 9, 1010–1027. [Google Scholar]
422.
Wang X, Saba T, Yiu HHP, Howe RF, Anderson JA, Shi J. Cofactor NAD(P)H Regeneration Inspired by Heterogeneous Pathways.  Chem 2017, 2, 621–654. [Google Scholar]
423.
Ali I, Khan T, Omanovic S. Direct electrochemical regeneration of the cofactor NADH on bare Ti, Ni, Co and Cd electrodes: The influence of electrode potential and electrode material.  J. Mol. Catal. A Chem. 2014, 387, 86–91. [Google Scholar]
424.
Morello G, Megarity CF, Armstrong FA. The power of electrified nanoconfinement for energising, controlling and observing long enzyme cascades.  Nat. Commun. 2021, 12, 340. [Google Scholar]
425.
Castañeda-Losada L, Adam D, Paczia N, Buesen D, Steffler F, Sieber V, et al. Bioelectrocatalytic Cofactor Regeneration Coupled to CO2 Fixation in a Redox-Active Hydrogel for Stereoselective C−C Bond Formation.  Angew. Chem. Int. Ed. 2021, 60, 21056–21061. [Google Scholar]
426.
Wu R, Ma C, Zhu Z. Enzymatic electrosynthesis as an emerging electrochemical synthesis platform.  Curr. Opin. Electrochem. 2020, 19, 1–7. [Google Scholar]
427.
Simonis W, Urbach W. Photophosphorylation in vivo.  Annu. Rev. Plant Physiol. 1973, 24, 89–114. [Google Scholar]
428.
Gutierrez-Sanz O, Marques M, Pereira IAC, De Lacey AL, Lubitz W, Rudiger O. Orientation and Function of a Membrane-Bound Enzyme Monitored by Electrochemical Surface-Enhanced Infrared Absorption Spectroscopy.  J. Phys. Chem. Lett. 2013, 4, 2794–2798. [Google Scholar]
429.
Gutierrez-Sanz O, Tapia C, Marques MC, Zacarias S, Velez M, Pereira IAC, et al. Induction of a Proton Gradient across a Gold-Supported Biomimetic Membrane by Electroenzymatic H-2 Oxidation.  Angew. Chem. Int. Ed. 2015, 54, 2684–2687. [Google Scholar]
430.
Gutierrez-Sanz O, Natale P, Marquez I, Marques MC, Zacarias S, Pita M, et al. H-2-Fueled ATP Synthesis on an Electrode: Mimicking Cellular Respiration.  Angew. Chem.-Int. Ed. 2016, 55, 6216–6220. [Google Scholar]
431.
Jia Y, Li J. Reconstitution of FoF1-ATPase-based biomimetic systems.  Nat. Rev. Chem. 2019, 3, 361–374. [Google Scholar]
432.
Luo S, Adam D, Giaveri S, Barthel S, Cestellos-Blanco S, Hege D, et al. ATP production from electricity with a new-to-nature electrobiological module.  Joule 2023, 7, 1745–1758. [Google Scholar]
433.
Wu Z-Q, Li Z-Q, Li J-Y, Gu J, Xia X-H. Contribution of convection and diffusion to the cascade reaction kinetics of β-galactosidase/glucose oxidase confined in a microchannel.  Phys. Chem. Chem. Phys. 2016, 18, 14460–14465. [Google Scholar]
434.
Marques MPC, Szita N. Bioprocess microfluidics: applying microfluidic devices for bioprocessing.  Curr. Opin. Chem. Eng. 2017, 18, 61–68. [Google Scholar]
435.
Miyazaki M, Maeda H. Microchannel enzyme reactors and their applications for processing. Trends Biotechnol. 2006, 24, 463–470. [Google Scholar]
436.
Giannakopoulou A, Gkantzou E, Polydera A, Stamatis H. Multienzymatic nanoassemblies: Recent progress and applications.  Trends Biotechnol. 2020, 38, 202–216. [Google Scholar]
Creative Commons

© 2024 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (https://creativecommons.org/licenses/by/4.0/).