Commentary Open Access

Synthetic Biology Industry in China: Current State and Future Prospects

Synthetic Biology and Engineering. 2023, 1(2), 10014; https://doi.org/10.35534/sbe.2023.10014
Wei Luo 1, *    Yang Zhang 2,    Jun Peng 3,    Lishan Zhao 2, *   
1
Shenzhen Institute of Advanced Technology, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
2
Cataya Bio (Shanghai) Co., Ltd., 88 Daerwen Road, 4F/Building 2, Pudong New District, Shanghai 201203, China
3
Shenzhen Industrial Innovation Center for Engineering Biology, Xinhu Street, Guangming District, Shenzhen 518107, China
*
Authors to whom correspondence should be addressed.

Received: 31 Jul 2023    Accepted: 12 Sep 2023    Published: 14 Sep 2023   

Abstract

In this article, we provided an overview of the current state of the SynBio industry in China with a focus on its research and technology, its main applications, and major players. We also discussed future prospects including the challenges and advantages of the SynBio industry in China.

References

1.
Wikipedia. Synthetic Biology. Available online: https://en.wikipedia.org/wiki/Synthetic_biology (accessed on 12 September 2023).
2.
Roberts MAJ, Cranenburgh RM, Stevens MP, Oyston PCF. Synthetic biology: biology by design.  Microbiology 2013, 159, 1219. [Google Scholar]
3.
Benner SA, Sismour AM. Synthetic biology.  Nat. Rev. Genet. 2005, 6, 533–543. [Google Scholar]
4.
Khalil AS, Collins JJ. Synthetic biology: applications come of age.  Nat. Rev. Genet. 2010, 11, 367–379. [Google Scholar]
5.
Heinemann M, Panke S. Synthetic biology—putting engineering into biology.  Bioinformatics 2006, 22, 2790–2799. [Google Scholar]
6.
Zhao H. Synthetic Biology: Tools and Applications; Academic Press: Cambridge, MA, USA, 2013.
7.
Amyris Investor Mini-Series 1. Available online: https://investors.amyris.com/2020-12-03-Amyris-Launches-Virtual-Investor-Mini-Series (accessed on 12 September 2023).
8.
Singh, AH, Kaufmann-Malaga BB, Lerman JA, Dougherty DP, Zhang Y, Kilbo AL, et al. An Automated Scientist to Design and Optimize Microbial Strains for the Industrial Production of Small Molecules. bioRxiv 2023, doi:10.1101/2023.01.03.521657.
9.
The White House Office of Science and Technology Policy. Bold Goals for U.S. Biotechnology and Biomanufacturing. 2023. Available online: https://www.whitehouse.gov/wp-content/uploads/2023/03/Bold-Goals-for-U.S.-Biotechnology-and-Biomanufacturing-Harnessing-Research-and-Development-To-Further-Societal-Goals-FINAL.pdf (accessed on 12 September 2023).
10.
Synthetic Biology Is About to Disrupt Your Industry. Available online: https://www.bcg.com/publications/2022/synthetic-biology-is-about-to-disrupt-your-industry (accessed on 12 September 2023).
11.
Liu L, Wu L, Ma J, Wu X. Analysis of the deposits and samples of global patent microorganisms in the past 20 years.  Acta Microbiol. Sin. 2021, 61, 3836–3843. [Google Scholar]
12.
Li SY, Zhao GP, Wang J. C-Brick: a new standard for assembly of biological parts using Cpf1.  ACS Synth. Biol. 2016, 5, 1383–1388. [Google Scholar]
13.
Zhou J, Wu R, Xue X, Qin Z. CasHRA (Cas 9-facilitated Homologous Recombination Assembly) method of constructing megabase-sized DNA.  Nucleic Acids Res. 2016, 44, e124. [Google Scholar]
14.
Jiang W, Zhao X, Gabrieli T, Lou C, Ebenstein Y, Zhu TF. Cas9-Assisted Targeting of Chromosome segments CATCH enables one-step targeted cloning of large gene clusters.  Nat. Comm. 2015, 6, 8101. [Google Scholar]
15.
Anslan S, Mikryukov V, Armolaitis K, Ankuda J, Lazdina D, Makovskis K, et al. Highly comparable metabarcoding results from MGI-Tech and Illumina sequencing platforms.  PeerJ 2021, 9, e12254. [Google Scholar]
16.
Synthetic Biology & Bio Design. Available online: https://synbio-tech.com/synthetic-biology/ (accessed on 12 September 2023).
17.
QuarXeq by Dynegene. Available online: https://www.dynegene.com/index.php?c=article&id=315 (accessed on 12 September 2023).
18.
Liu Y, Cao Z, Wang Y, Guo Y, Xu P, Yuan P, et al. Genome-wide screening for functional long noncoding RNAs in human cells by Cas9 targeting of splice sites.  Nat. Biotech. 2018, 36, 1203–1210. [Google Scholar]
19.
Hu Y, Zu C, Zhang M, Wei G, Li W, Fu S, et al. Safety and efficacy of CRISPR-based non-viral PD1 locus specifically integrated anti-CD19 CAR-T cells in patients with relapsed or refractory Non-Hodgkin’s lymphoma: a first-in-human phase I study.  Blood 2022, 144, 7491–7429. [Google Scholar]
20.
Li L, Liang Y, Kang L, Liu Y, Gao S, Chen S, et al. Transcriptional regulation of the Warburg effect in cancer by SIX1.  Cancer Cell 2018, 33, 368–385. [Google Scholar]
21.
Global DNA read, write and edit market. Available online: https://www.bccresearch.com/market-research/biotechnology/dna-technologies-market-report.html (accessed on 12 September 2023).
22.
CYZONE Research Report on the Development of China’s Synthetic Biology Industry in 2022. Available online: https://www.cyzone.cn/article/714214.html (accessed on 12 September 2023).
23.
Global Synthetic Biology Market to Reach US$28.8 Billion by the Year 2026. Available online: https://www.globenewswire.com/news-release/2022/01/19/2369148/0/en/Global-Synthetic-Biology-Market-to-Reach-US-28-8-Billion-by-the-Year-2026.html (accessed on 12 September 2023).
24.
French KE. Harnessing synthetic biology for sustainable development.  Nat. Sus. 2019, 2, 250–252. [Google Scholar]
25.
Shi S, Wang Z, Shen L, Xiao H. Synthetic biology: a new frontier in food production.  Trends Biotech. 2022, 40, 781–803. [Google Scholar]
26.
The bio revolution: innovations transforming economies, societies, and our lives. Available online: https://www.mckinsey.com/industries/pharmaceuticals-and-medical-products/our-insights/the-bio-revolution-innovations-transforming-economies-societies-and-our-lives (accessed on 12 September 2023).
27.
Engineering Life: Funding to Synthetic Biology Startups Surpasses $1B. Available online: https://www.cbinsights.com/research/synthetic-biology-startup-funding/ (accessed on 12 September 2023).
Creative Commons

© 2024 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (https://creativecommons.org/licenses/by/4.0/).