Issue 3, Volume 3 – 3 articles

Open Access

Article

15 July 2025

Hydrogen Farms Baseline Economic Model

This paper presents a comprehensive economic assessment of hydrogen farms based on two distinct production technologies. The first technology involves the use of alkaline electrolysers, evaluated under two scenarios: integration with 600 MW and 900 MW combined-cycle gas turbine (CCGT) packages. The second technology focuses on proton exchange membrane (PEM) electrolysers, also analysed under the same two CCGT capacity scenarios. Across all four scenarios, the analysis incorporates the inclusion of hydrogen storage systems and a range of critical safety equipment, such as hydrogen detectors and sensors, gas detection control panels, pressure-relief valves (PRVs), flame detectors, fire suppression systems, high-pressure rupture discs, blast-proof walls, and alarm and warning systems. Alkaline electrolysers constitute most of the capital investment in alkaline hydrogen farms. In the case of a farm utilising 600 MW of combined-cycle gas turbines (CCGTs), electrolysers account for approximately 90.48% of the total capital cost of USD 0.8156 trillion, with CCGTs contributing 4.09% and hydrogen storage and safety equipment comprising the remaining 5.43%. For a similar farm equipped with 900 MW CCGTs, the total capital cost is slightly lower at USD 0.8137 trillion, where alkaline electrolysers represent 90.70%, CCGTs 3.86%, and hydrogen storage and safety systems 5.44% of the overall investment. Proton exchange membrane (PEM) electrolysers represent the largest portion of capital investment in PEM-based hydrogen farms. For a configuration incorporating 600 MW combined-cycle gas turbines (CCGTs), PEM electrolysers account for approximately 91.92% of the total capital cost of USD 1.007 trillion, with CCGTs contributing 3.31% and hydrogen storage and safety equipment comprising 4.77%. In comparison, the capital cost for a similar farm with 900 MW CCGTs is slightly lower at USD 1.005 trillion, where PEM electrolysers make up 92.10%, CCGTs account for 3.13%, and hydrogen storage and safety systems remain at 4.77% of the total investment. This study provides a foundational examination for strategic decision-makers during the transition of an economy from oil-based to non-carbon energy exports, alongside achieving zero carbon emissions. The central premise revolves around the provision of environmental performance while simultaneously avoiding economic downturns. It situates the study within Libya’s broader decarbonisation strategy and explicitly includes an additional 470 MW CCGT configuration, expanding the range of system scales assessed. The study adopts a 25-year operational lifespan, applying a cumulative cost approach that integrates both capital expenditure and long-term O&M. It presents lifetime cost figures, USD 1.2166 trillion for the alkaline 600 MW setup and USD 1.3585 trillion for the PEM counterpart, highlighting the scale of investment required. The study also explains the higher operation and maintenance (O&M) burden of PEM systems due to their sensitive components and maintenance demands, while emphasising the cost advantages of alkaline systems and stronger economies of scale when upsized. The study highlights clear differences between PEM and alkaline electrolysis technologies, especially in terms of costs and scalability. Although PEM systems are more expensive upfront—mainly due to their complex materials and shorter operational lifespan—they make better use of space and have a more compact design. On the other hand, alkaline electrolysers, which take up more land, prove to be more affordable both initially and over the system’s lifetime. Notably, scaling alkaline systems from 600 MW to 900 MW shows modest but valuable cost savings, underscoring the impact of economies of scale. These insights are particularly relevant for regions like Libya, where land is not a limiting factor and cost-efficiency is essential for project feasibility.

Open Access

Article

21 July 2025

Mechanism Obstacles and Path Breakthroughs for International Low-Carbon Technology Sharing

The deepening of global climate governance urgently needs to solve the institutional predicament between the monopoly and sharing of low-carbon technologies. In analyzing the institutional obstacles to the sharing of low-carbon technology, the study found significant asymmetric conflicts between developed and developing countries in technology supply, institutional rules, and market dynamics. The current international rule system (such as the Agreement on Trade-Related Aspects of Intellectual Property Rights and Bilateral Investment Agreement) has solidified the “central-periphery” pattern of technology distribution through tools such as “prohibition provisions on compliance requirements” and “green patent barriers”, resulting in developing countries facing dual pressures of “compliance costs” and “technology dependence”. In contrast, developed countries have fallen into the predicament of “innovation involution” due to the mismatch of technological application scenarios. Based on the theory of the technology life cycle and the perspective of subject complementarity, there is a structural mutual benefit space in the supply and demand of low-carbon technologies among different countries: developing countries can shorten the industrial decarbonization cycle through technology sharing, while developed countries rely on technology diffusion to digest excess capacity and consolidate their dominance in rules. By deconstructing the practical effectiveness of the low-carbon patent sharing platform and the defensive patent licensing model, it is highly feasible to reconstruct the technology sharing incentive framework with the “open-source mechanism”. Constructing a multi-level incentive mechanism to promote corporate participation, introducing dynamic defensive patent commitments, strengthening institutional capacity building, establishing a coordinated regulatory mechanism, and enhancing stakeholder compliance mechanisms are institutional optimization pathways. These provide a legal basis for harmonizing the exclusivity of intellectual property rights with the public nature of climate governance, and also offer strategic references for China’s participation in the formulation of global low-carbon technology regulations.

Clean Energy Sustain.
2025,
3
(3), 10009; 
Open Access

Review

21 July 2025

Fuel Oil Combustion Pollution and Hydrogen-Water Blending Technologies for Emission Mitigation: Current Advancements and Future Challenges

In recent years, researchers have focused on exploring alternative fuel technologies that enhance engine performance and combustion efficiency while reducing nitrogen oxide (NOx) and particulate matter (PM) emissions. Water-diesel emulsified fuel, which requires no engine modifications, has emerged as a critical pathway for cleaner diesel engine applications. This review systematically examines the combustion characteristics, emission performance, and energy efficiency of emulsified fuels in compression ignition (CI) engines. Studies indicate that compared to conventional pure diesel, emulsified fuels significantly optimize combustion processes through micro-explosion phenomena, shorten ignition delays, and improve combustion efficiency. Notably, NOx and PM emissions are simultaneously reduced, effectively resolving the traditional trade-off dilemma between pollutant reduction targets. Emulsified fuel exhibits comparable power output and fuel consumption rates to those of pure diesel, while delivering enhanced environmental benefits. Additionally, innovative technologies such as hydrogen nanobubbles further enhance combustion dynamics by improving fuel atomization and radical generation, though challenges persist in stabilizing non-aqueous nanobubbles and scaling up production. Despite ongoing advancements in policy incentives (e.g., green hydrogen subsidies) and combustion mechanism research, industrial adoption of emulsified fuels still faces technical hurdles, including equipment corrosion and issues with long-term storage stability issues. In conclusion, water-based emulsified fuels and hydrogen-water blending technologies provide efficient and low-cost transitional solutions for reducing diesel engine emissions, with their multi-component synergistic optimization mechanisms laying a theoretical and practical foundation for future clean fuel development.

Clean Energy Sustain.
2025,
3
(3), 10010; 
TOP