Review Open Access

Deciphering the Code of Pattern Formation: Integrating In Silico and Wet Lab Approaches in Synthetic Biology

Synthetic Biology and Engineering. 2023, 1(3), 10018; https://doi.org/10.35534/sbe.2023.10018
Anqi Xu 1,    Lizhong Liu 2,    Jian-Dong Huang 1, 3, 4, *   
1
School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
2
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
3
Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
4
Clinical Oncology Center, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
*
Authors to whom correspondence should be addressed.

Received: 05 Dec 2023    Accepted: 21 Dec 2023    Published: 27 Dec 2023   

Abstract

Pattern formation is a fundamental process in biological development, enabling the transformation of initially uniform or random states into spatially ordered structures. A comprehensive understanding of the formation and function of these patterns is crucial for unraveling the underlying principles of biological design and engineering. In recent years, synthetic biology has emerged as a powerful discipline for investigating and manipulating pattern formation in biological systems, involving the design and construction of novel biological components, circuits, and networks with specific functionalities. The integration of computational simulations (in silico) and experimental techniques (wet lab) in synthetic biology has significantly advanced our knowledge of pattern formation and its implications in biological design and engineering. This review provides an overview of the computational simulations employed in studying pattern formation and introduces the representative and cutting-edge experimental methods utilized in wet labs.

References

1.
Turing AM. The Chemical Basis of Morphogenesis.  Philos. Trans.R. Soc. Lond. B Biol. Sci. 1952, 237, 37–72. [Google Scholar]
2.
Warmflash A, Sorre B, Etoc F, Siggia ED, Brivanlou AH. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells.  Nat. Method. 2014, 11, 847–854. [Google Scholar]
3.
Harrison SE, Sozen B, Christodoulou N, Kyprianou C, Zernicka-Goetz M. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro.  Science 2017, 356, eaal1810. [Google Scholar]
4.
Liu C, Fu X, Liu L, Ren X, Chau CK, Li S, et al. Sequential establishment of stripe patterns in an expanding cell population.  Science 2011, 334, 238–241. [Google Scholar]
5.
Morsut L, Roybal KT, Xiong X, Gordley RM, Coyle SM, Thomson M, et al. Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors.  Cell 2016, 164, 780–791. [Google Scholar]
6.
Chen C, Dong S, Yu Z, Qiao Y, Li J, Ding X, et al. Essential autoproteolysis of bacterial anti-σ factor RsgI for transmembrane signal transduction.  Sci. Adv. 2023, 9, eadg4846. [Google Scholar]
7.
Duran-Nebreda S, Pla J, Vidiella B, Piñero J, Conde-Pueyo N, Solé R. Synthetic Lateral Inhibition in Periodic Pattern Forming Microbial Colonies.  ACS Synth. Biol. 2021, 10, 277–285. [Google Scholar]
8.
Ma Y, Budde MW, Mayalu MN, Zhu J, Lu AC, Murray RM, et al. Synthetic mammalian signaling circuits for robust cell population control.  Cell 2022, 185, 967–979.e12. [Google Scholar]
9.
Dai Y, Farag M, Lee D, Zeng X, Kim K, Son HI, et al. Programmable synthetic biomolecular condensates for cellular control.  Nat. Chem. Biol. 2023, 19, 518–528. [Google Scholar]
10.
Xu X, Risoul V, Byrne D, Champ S, Douzi B, Latifi A. HetL, HetR and PatS form a reaction-diffusion system to control pattern formation in the cyanobacterium nostoc PCC 7120.  Elife 2020, 9, e59190. [Google Scholar]
11.
Glover JD, Sudderick ZR, Shih BB-J, Batho-Samblas C, Charlton L, Krause AL, et al.  The developmental basis of fingerprint pattern formation and variation.  Cell 2023, 186, 940–956. [Google Scholar]
12.
Kaelin CB, McGowan KA, Barsh GS. Developmental genetics of color pattern establishment in cats.  Nat. Commun. 2021, 12, 5127. [Google Scholar]
13.
Sick S, Reinker S, Timmer J, Schlake T. WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism.  Science 2006, 314, 1447–1450. [Google Scholar]
14.
Economou AD, Ohazama A, Porntaveetus T, Sharpe PT, Kondo S, Basson MA, et al. Periodic stripe formation by a Turing mechanism operating at growth zones in the mammalian palate. Nat. Genet. 2012, 44, 348–351. [Google Scholar]
15.
Schiffmann Y. Turing-Child field underlies spatial periodicity in Drosophila and planarians.  Progr. Biophys. Mol. Biol. 2011, 105, 258–269. [Google Scholar]
16.
Levin SA, Segel LA. Hypothesis for origin of planktonic patchiness.  Nature 1976, 259, 659. [Google Scholar]
17.
Mimura M, Murray JD. On a diffusive prey-predator model which exhibits patchiness.  J. Theor. Biol. 1978, 75, 249–262. [Google Scholar]
18.
Elowitz M, Lim WA. Build life to understand it.  Nature 2010, 468, 889–890. [Google Scholar]
19.
Tanaka M, Montgomery SM, Yue L, Wei Y, Song Y, Nomura T, et al. Turing pattern-based design and fabrication of inflatable shape-morphing structures.  Sci. Adv. 2023, 9, eade4381. [Google Scholar]
20.
Vittadello ST, Leyshon T, Schnoerr D, Stumpf MPH. Turing pattern design principles and their robustness.  Philos. Trans. A Math. Phys. Eng. Sci. 2021, 379, 20200272. [Google Scholar]
21.
Entchev EV, Schwabedissen A, González-Gaitán M. Gradient formation of the TGF-beta homolog Dpp.  Cell 2000, 103, 981–992. [Google Scholar]
22.
Lecuit T, Brook WJ, Ng M, Calleja M, Sun H, Cohen SM. Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing.  Nature 1996, 381, 387–393. [Google Scholar]
23.
Inomata H. Scaling of pattern formations and morphogen gradients.  Dev. Growth Differ. 2017, 59, 41–51. [Google Scholar]
24.
Szurmant H, Ordal GW. Diversity in chemotaxis mechanisms among the bacteria and archaea.  Microbiol. Mol. Biol. Rev. 2004, 68, 301–319. [Google Scholar]
25.
Budrene EO, Berg HC. Dynamics of formation of symmetrical patterns by chemotactic bacteria.  Nature 1995, 376, 49–53. [Google Scholar]
26.
Fitzhugh R. Impulses and Physiological States in Theoretical Models of Nerve Membrane.  Biophys. J. 1961, 1, 445–466. [Google Scholar]
27.
Nagumo J, Arimoto S, Yoshizawa S. An Active Pulse Transmission Line Simulating Nerve Axon.  Proc. IRE 1962, 50, 2061–2070. [Google Scholar]
28.
Meinhardt H, Gierer A. Pattern formation by local self-activation and lateral inhibition.  Bioessays 2000, 22, 753–760. [Google Scholar]
29.
Zheng MM, Shao B, Ouyang Q. Identifying network topologies that can generate turing pattern.  J. Theor. Biol. 2016, 408, 88–96. [Google Scholar]
30.
Dexter JS. The Analysis of a Case of Continuous Variation in Drosophila by a Study of Its Linkage Relations.  Am. Nat. 1914, 48, 712–758. [Google Scholar]
31.
Logeat F, Bessia C, Brou C, LeBail O, Jarriault S, Seidah NG, et al. The Notch1 receptor is cleaved constitutively by a furin-like convertase.  Proc. Natl. Acad. Sci. USA 1998, 95, 8108–8112. [Google Scholar]
32.
Wang W. Struhl G. Drosophila Epsin mediates a select endocytic pathway that DSL ligands must enter to activate Notch.  Development 2004, 131, 5367–5380. [Google Scholar]
33.
van den Brink SC, Baillie-Johnson P, Balayo T, Hadjantonakis AK, Nowotschin S, Turner DA, et al. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells.  Development 2014, 141, 4231–4242. [Google Scholar]
34.
Rivron NC, Frias-Aldeguer J, Vrij EJ, Boisset JC, Korving J, Vivié J, et al. Blastocyst-like structures generated solely from stem cells.  Nature 2018, 557, 106–111. [Google Scholar]
35.
Rossant J, Tam PPL. Opportunities and challenges with stem cell-based embryo models.  Stem Cell Rep. 2021, 16, 1031–1038. [Google Scholar]
36.
Bao M, Cornwall-Scoones J, Zernicka-Goetz M. Stem-cell-based human and mouse embryo models.  Curr. Opin. Genet. Dev. 2022, 76, 101970. [Google Scholar]
37.
Lee HC, Hastings C, Oliveira NMM, Pérez-Carrasco R, Page KM, Wolpert L, et al.  ‘Neighbourhood watch’ model: embryonic epiblast cells assess positional information in relation to their neighbours.  Development 2022, 149, dev200295. [Google Scholar]
38.
Wolpert L. Positional information and the spatial pattern of cellular differentiation.  J. Theor. Biol. 1969, 25, 1–47. [Google Scholar]
39.
Heemskerk I, Warmflash A. Pluripotent stem cells as a model for embryonic patterning: From signaling dynamics to spatial organization in a dish. Dev. Dyn. 2016, 245, 976–990. [Google Scholar]
40.
Liu L, Oura S, Markham Z, Hamilton JN, Skory RM, Li L, et al. Modeling post-implantation stages of human development into early organogenesis with stem-cell-derived peri-gastruloids. Cell 2023, 186, 3776–3792. [Google Scholar]
41.
Weatherbee BAT, Gantner CW, Iwamoto-Stohl LK, Daza RM, Hamazaki N, Shendure J, et al. Pluripotent stem cell-derived model of the post-implantation human embryo.  Nature 2023, 622, 584–593. [Google Scholar]
42.
Pedroza M, Gassaloglu SI, Dias N, Zhong L, Hou TJ, Kretzmer H, et al. Self-patterning of human stem cells into post-implantation lineages.  Nature 2023, 622, 574–583. [Google Scholar]
43.
Ai Z, Niu B, Yin Y, Xiang L, Shi G, Duan K, et al. Dissecting peri-implantation development using cultured human embryos and embryo-like assembloids.  Cell Res. 2023, 33, 661–678. [Google Scholar]
44.
Hislop J, Alavi A, Song Q, Schoenberger R, Kamyar KF, LeGraw R, et al. Modelling Human Post-Implantation Development via Extra-Embryonic Niche Engineering. bioRxiv 2023, doi:10.1101/2023.06.15.545118.
45.
Oldak B, Wildschutz E, Bondarenko V, Comar MY, Zhao C, Aguilera-Castrejon A, et al. Complete human day 14 post-implantation embryo models from naive ES cells.  Nature 2023, 622, 562–573. [Google Scholar]
46.
Yuan G, Wang J, Liu Z, Chen M, Zhu P, Zhang H, et al. Establishment of a novel non-integrated human pluripotent stem cell-based gastruloid model. bioRxiv 2023, doi:10.1101/2023.06.28.546720.
47.
Yu L, Wei Y, Duan J, Schmitz DA, Sakurai M, Wang L, et al. Blastocyst-like structures generated from human pluripotent stem cells.  Nature 2021, 591, 620–626. [Google Scholar]
48.
Liu, X., Pan JP, Schröder J, Aberkane A, Ouyang JF, Mohenska M, et al. Modelling human blastocysts by reprogramming fibroblasts into iBlastoids.  Nature 2021, 591, 627–632. [Google Scholar]
49.
Kagawa H, Javali A, Khoei HH, Sommer TM, Sestini G, Novatchkova M, et al. Human blastoids model blastocyst development and implantation.  Nature 2022, 601, 600–605. [Google Scholar]
50.
Landecker HL, Clark AT. Human embryo models made from pluripotent stem cells are not synthetic; they aren’t embryos, either.  Cell Stem Cell 2023, 30, 1290–1293. [Google Scholar]
51.
Pinzón-Arteaga CA, Wang Y, Wei Y, Ribeiro Orsi AE, Li L, Scatolin G, et al. Bovine blastocyst-like structures derived from stem cell cultures.  Cell Stem Cell 2023, 30, 611–616. [Google Scholar]
52.
Li J, Zhu Q, Cao J, Liu Y, Lu Y, Sun Y, et al. Cynomolgus monkey embryo model captures gastrulation and early pregnancy. Cell Stem Cell 2023, 30, 362–377. [Google Scholar]
53.
Oh SY, Na SB, Kang YK, Do JT. In Vitro Embryogenesis and Gastrulation Using Stem Cells in Mice and Humans.  Int. J. Mol. Sci. 2023, 24, 13655. [Google Scholar]
54.
Fan Y, Min Z, Alsolami S, Ma Z, Zhang E, Chen W, et al. Generation of human blastocyst-like structures from pluripotent stem cells.  Cell Discov. 2021, 7, 81. [Google Scholar]
55.
Tu Z, Bi Y, Zhu X, Liu W, Hu J, Wu L, et al.  Modeling human pregastrulation development by 3D culture of blastoids generated from primed-to-naïve transitioning intermediates.  Protein Cell 2023, 14, 337–349. [Google Scholar]
56.
Zhang S, Chen T, Chen N, Gao D, Shi B, Kong S, et al. Implantation initiation of self-assembled embryo-like structures generated using three types of mouse blastocyst-derived stem cells.  Nat. Commun. 2019, 10, 496. [Google Scholar]
57.
Sozen B, Amadei G, Cox A, Wang R, Na E, Czukiewska S, et al. Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures.  Nat. Cell Biol. 2018, 20, 979–989. [Google Scholar]
58.
Lau KYC, Rubinstein H, Gantner CW, Hadas R, Amadei G, Stelzer Y, et al. Mouse embryo model derived exclusively from embryonic stem cells undergoes neurulation and heart development.  Cell Stem Cell 2022, 29, 1445–1458.e8. [Google Scholar]
59.
Tarazi S, Aguilera-Castrejon A, Joubran C, Ghanem N, Ashouokhi S, Roncato F, et al. Post-gastrulation synthetic embryos generated ex utero from mouse naive ESCs.  Cell 2022, 185, 3290–3306.e25. [Google Scholar]
60.
Xu Y, Zhao J, Ren Y, Wang X, Lyu Y, Xie B, et al. Derivation of totipotent-like stem cells with blastocyst-like structure forming potential.  Cell Res. 2022, 32, 513–529. [Google Scholar]
61.
Stapornwongkul KS, de Gennes M, Cocconi L, Salbreux G, Vincent JP. Patterning and growth control in vivo by an engineered GFP gradient. Science 2020, 370, 321–327. [Google Scholar]
62.
Toda S, McKeithan WL, Hakkinen TJ, Lopez P, Klein OD, Lim WA. Engineering synthetic morphogen systems that can program multicellular patterning.  Science 2020, 370, 327–331. [Google Scholar]
63.
Li S, Wu S, Ren Y, Meng Q, Yin J, Yu Z. Characterization of differentiated autoregulation of LuxI/LuxR-type quorum sensing system in Pseudoalteromonas Biochem. Biophys. Res. Commun. 2022, 590, 177–183. [Google Scholar]
64.
Wolfe AJ, Berg HC. Migration of bacteria in semisolid agar.  Proc. Natl. Acad. Sci. USA 1989, 86, 6973–6977. [Google Scholar]
65.
Vanag VK, Epstein IR. Cross-diffusion and pattern formation in reaction-diffusion systems.  Phys. Chem. Chem. Phys. 2009, 11, 897–912. [Google Scholar]
66.
Micchelli CA, Rulifson EJ, Blair SS. The function and regulation of cut expression on the wing margin of Drosophila: Notch, Wingless and a dominant negative role for Delta and Serrate.  Development 1997, 124, 1485–1495. [Google Scholar]
67.
Bastiaansen KC, Otero-Asman JR, Luirink J, Bitter W, Llamas MA. Processing of cell-surface signalling anti-sigma factors prior to signal recognition is a conserved autoproteolytic mechanism that produces two functional domains.  Environ. Microbiol. 2015, 17, 3263–3277. [Google Scholar]
68.
Kahel-Raifer H, Jindou S, Bahari L, Nataf Y, Shoham Y, Bayer EA, et al. The unique set of putative membrane-associated anti-sigma factors in Clostridium thermocellum suggests a novel extracellular carbohydrate-sensing mechanism involved in gene regulation.  FEMS Microbiol. Lett. 2010, 308, 84–93. [Google Scholar]
69.
Vecchiarelli AG, Li M, Mizuuchi M, Hwang LC, Seol Y, Neuman KC, et al.  Membrane-bound MinDE complex acts as a toggle switch that drives Min oscillation coupled to cytoplasmic depletion of MinD.  Proc. Natl. Acad. Sci. USA 2016, 113, 1479–1488. [Google Scholar]
70.
Ramm B, Heermann T, Schwille P. The E. coli MinCDE system in the regulation of protein patterns and gradients.  Cell. Mol. Life Sci. 2019, 76, 4245–4273. [Google Scholar]
71.
Godino E, Doerr A, Danelon C. Min waves without MinC can pattern FtsA-anchored FtsZ filaments on model membranes.  Commun. Biol. 2022, 5, 675. [Google Scholar]
72.
Papenfort K, and Bassler BL. Quorum sensing signal-response systems in Gram-negative bacteria.  Nat. Rev. Microbiol. 2016, 14, 576–588. [Google Scholar]
73.
Mukherjee S, Moustafa D, Smith CD, Goldberg JB, Bassler BL. The RhlR quorum-sensing receptor controls Pseudomonas aeruginosa pathogenesis and biofilm development independently of its canonical homoserine lactone autoinducer.  PLoS Pathog. 2017, 13, e1006504. [Google Scholar]
74.
Swem LR, Swem DL, O’Loughlin CT, Gatmaitan R, Zhao B, Ulrich SM, et al. A quorum-sensing antagonist targets both membrane-bound and cytoplasmic receptors and controls bacterial pathogenicity.  Mol. Cell 2009, 35, 143–153. [Google Scholar]
75.
Building light-activated synthetic cells that induce gene expression in bacteria via quorum sensing. Nat. Chem. Biol. 2023, 19, 1052–1053. [Google Scholar]
76.
Ahlgren NA, Harwood CS, Schaefer AL, Giraud E, Greenberg EP. Aryl-homoserine lactone quorum sensing in stem-nodulating photosynthetic bradyrhizobia.  Proc. Natl. Acad. Sci. USA 2011, 108, 7183–7188. [Google Scholar]
77.
Hirakawa H, Oda Y, Phattarasukol S, Armour CD, Castle JC, Raymond CK, et al. Activity of the Rhodopseudomonas palustris p-coumaroyl-homoserine lactone-responsive transcription factor RpaR.  J. Bacteriol. 2011, 193, 2598–2607. [Google Scholar]
78.
Tekel SJ, Smith CL, Lopez B, Mani A, Connot C, Livingstone X, et al. Engineered Orthogonal Quorum Sensing Systems for Synthetic Gene Regulation in Escherichia coli.  Front. Bioeng. Biotechnol. 2019, 7, 80. [Google Scholar]
79.
Brödel AK, Jaramillo A, Isalan M. Engineering orthogonal dual transcription factors for multi-input synthetic promoters.  Nat. Commun. 2016, 7, 13858. [Google Scholar]
80.
Horns F, Martinez JA, Fan C, Haque M, Linton JM, Tobin V, et al. Engineering RNA export for measurement and manipulation of living cells.  Cell 2023, 186, 3642–3658.e32. [Google Scholar]
81.
Livny J, Yamaichi Y, Waldor MK. Distribution of centromere-like parS sites in bacteria: insights from comparative genomics.  J. Bacteriol. 2007, 189, 8693–8703. [Google Scholar]
82.
Plahar HA, Rich TN, Lane SD, Morrell WC, Leanne Springthorpe, Nnadi O, et al. BioParts—Biological Parts Search Portal and Updates to the ICE Parts Registry Software Platform.  ACS Synth. Biol. 2021, 10, 2649–2660. [Google Scholar]
Creative Commons

© 2024 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (https://creativecommons.org/licenses/by/4.0/).