Review Open Access

Challenging Post-translational Modifications in the Cell-free Protein Synthesis System

Synthetic Biology and Engineering. 2023, 1(2), 10011; https://doi.org/10.35534/sbe.2023.10011
Kassidy B. Porche 1,†    Claire E. Lanclos 1,†    Yong-Chan Kwon 1,2 *   
1
Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
2
Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
These authors contributed equally to this work.
*
Authors to whom correspondence should be addressed.

Received: 21 Jun 2023    Accepted: 24 Jul 2023    Published: 28 Jul 2023   

Abstract

Post-translational modifications (PTMs) represent a cornerstone in the complexity of the proteome, significantly contributing to diversifying protein structure and function. PTMs can considerably influence protein function, stability, localization, and interactions with other molecules. Therefore, it is important when choosing a protein expression system to ensure the precise incorporation of PTMs during protein synthesis, which is paramount for producing biologically active proteins. The cell-free protein synthesis (CFPS) system has emerged as a powerful protein synthesis platform and research toolkit in synthetic biology. The open nature of the system allows the reaction environment to be tailored to any protein of interest to promote specific PTMs, thus allowing for the production of a protein with desired modifications. This review presents various PTMs achieved in the CFPS systems, providing insights into current challenges, successes, and future prospects.

References

1.
Spoel SH. Orchestrating the proteome with post-translational modifications.  J. Exp. Bot. 2018, 69, 4499–4503. [Google Scholar]
2.
Macek B, Forchhammer K, Hardouin J, Weber-Ban E, Grangeasse C, Mijakovic I. Protein post-translational modifications in bacteria.  Nat. Rev. Microbiol. 2019, 17, 651–664. [Google Scholar]
3.
Ramazi S, Zahiri J. Post-translational modifications in proteins: resources, tools and prediction methods.  Database 2021, 2021, baab012. [Google Scholar]
4.
Ercan-Herbst E, Ehrig J, Schöndorf DC, Behrendt A, Klaus B, Gomez Ramos B, et al. A post-translational modification signature defines changes in soluble tau correlating with oligomerization in early stage Alzheimer’s disease brain.  Acta Neuropathol. Commun. 2019, 7, 192. [Google Scholar]
5.
Zhang J, Li X, Li JD. The roles of post-translational modifications on α-synuclein in the pathogenesis of Parkinson’s diseases.  Front. Neurosci. 2019, 13, 381. [Google Scholar]
6.
Nirenberg MW, Matthaei JH. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides.  Proc. Natl. Acad. Sci. USA 1961, 47, 1588–1602. [Google Scholar]
7.
Silverman AD, Karim AS, Jewett MC. Cell-free gene expression: an expanded repertoire of applications.  Nat. Rev. Genet. 2020, 21, 151–170. [Google Scholar]
8.
Zawada JF, Burgenson D, Yin G, Hallam TJ, Swartz JR, Kiss RD. Cell-free technologies for biopharmaceutical research and production.  Curr. Opin. Biotechnol. 2022, 76, 102719. [Google Scholar]
9.
Khambhati K, Bhattacharjee G, Gohil N, Braddick D, Kulkarni V, Singh V. Exploring the potential of cell-free protein synthesis for extending the abilities of biological systems.  Front. Bioeng. Biotechnol. 2019, 7, 248. [Google Scholar]
10.
Jeong D, Klocke M, Agarwal S, Kim J, Choi S, Franco E, et al. Cell-free synthetic biology platform for engineering synthetic biological circuits and systems.  Methods Protoc. 2019, 2, 39. [Google Scholar]
11.
Martin RW, Des Soye BJ, Kwon YC, Kay J, Davis RG, Thomas PM, et al. Cell-free protein synthesis from genomically recoded bacteria enables multisite incorporation of noncanonical amino acids.  Nat. Commun. 2018, 9, 1203. [Google Scholar]
12.
Wu Y, Cui Z, Huang Y-H, de Veer SJ, Aralov AV, Guo Z, et al. Towards a generic prototyping approach for therapeutically-relevant peptides and proteins in a cell-free translation system.  Nat. Commun. 2022, 13, 260. [Google Scholar]
13.
Durocher Y, Butler M. Expression systems for therapeutic glycoprotein production.  Curr. Opin. Biotechnol. 2009, 20, 700–707. [Google Scholar]
14.
Ho RJY, Chien J. Trends in translational medicine and drug targeting and delivery: new insights on an old concept—targeted drug delivery with antibody–drug conjugates for cancers.  J. Pharm. Sci. 2014, 103, 71–77. [Google Scholar]
15.
Sullivan CJ, Pendleton ED, Sasmor HH, Hicks WL, Farnum JB, Muto M, et al. A cell-free expression and purification process for rapid production of protein biologics.  Biotechnol. J. 2016, 11, 238–248. [Google Scholar]
16.
Tran K, Gurramkonda C, Cooper MA, Pilli M, Taris JE, Selock N, et al. Cell-free production of a therapeutic protein: expression, purification, and characterization of recombinant streptokinase using a CHO lysate.  Biotechnol. Bioeng. 2018, 115, 92–102. [Google Scholar]
17.
Kim J, Copeland CE, Seki K, Vögeli B, Kwon YC. Tuning the cell-free protein synthesis system for biomanufacturing of monomeric human filaggrin.  Front. Bioeng. Biotechnol. 2020, 8, 590341. [Google Scholar]
18.
Zemella A, Thoring L, Hoffmeister C, Kubick S. Cell-free protein synthesis: pros and cons of prokaryotic and eukaryotic systems.  Chembiochem 2015, 16, 2420–2431. [Google Scholar]
19.
Weiss K, Racho J, Riemer J. Compartmentalized disulfide bond formation pathways. In Redox Chemistry and Biology of Thiols, 1st ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 321–340.
20.
Murakami S, Matsumoto R, Kanamori T. Constructive approach for synthesis of a functional IgG using a reconstituted cell-free protein synthesis system.  Sci. Rep. 2019, 9, 671. [Google Scholar]
21.
Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T. Cell-free translation reconstituted with purified components.  Nat. Biotechnol. 2001, 19, 751–755. [Google Scholar]
22.
Siddiquee R, Choi SS, Lam SS, Wang P, Qi R, Otting G, et al. Cell-free expression of natively folded hydrophobins.  Protein Expr. Purif. 2020, 170, 105591. [Google Scholar]
23.
El-Baky NA, EL-Fakharany EM, Sabry SA, El-Helow ER, Redwan EM, Sabry A. A de novo optimized cell-free system for the expression of soluble and active human tumor necrosis factor-α.  Biology 2022, 11, 157. [Google Scholar]
24.
Dopp JL, Reuel NF. Simple, functional, inexpensive cell extract for in vitro prototyping of proteins with disulfide bonds.  Biochem. Eng. J. 2020, 164, 107790. [Google Scholar]
25.
Bundy BC, Franciszkowicz MJ, Swartz JR. Escherichia coli-based cell-free synthesis of virus-like particles.  Biotechnol. Bioeng. 2008, 100, 28–37. [Google Scholar]
26.
Bundy BC, Swartz JR. Efficient disulfide bond formation in virus-like particles.  J. Biotechnol. 2011, 154, 230–239. [Google Scholar]
27.
Shrimal S, Cherepanova NA, Gilmore R. Cotranslational and posttranslocational N-glycosylation of proteins in the endoplasmic reticulum.  Semin. Cell Dev. Biol. 2015, 41, 71–78. [Google Scholar]
28.
Reily C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and disease.  Nat. Rev. Nephrol. 2019, 15, 346–366. [Google Scholar]
29.
Jaroentomeechai T, Stark JC, Natarajan A, Glasscock CJ, Yates LE, Hsu KJ, et al. Single-pot glycoprotein biosynthesis using a cell-free transcription-translation system enriched with glycosylation machinery.  Nat. Commun. 2018, 9, 2686. [Google Scholar]
30.
Krebs SK, Stech M, Jorde F, Rakotoarinoro N, Ramm F, Marinoff S, et al. Synthesis of an anti-CD7 recombinant immunotoxin based on PE24 in CHO and E. coli cell-free systems.  Int. J. Mol. Sci. 2022, 23, 13697. [Google Scholar]
31.
Thames AH, Moons SJ, Wong DA, Boltje TJ, Bochner BS, Jewett MC. GlycoCAP: a cell-free, bacterial glycosylation platform for building clickable azido-sialoglycoproteins.  ACS Synth. Biol. 2023, 12, 1264–1274. [Google Scholar]
32.
Oza JP, Aerni HR, Pirman NL, Barber KW, ter Haar CM, Rogulina S, et al. Robust production of recombinant phosphoproteins using cell-free protein synthesis.  Nat. Commun. 2015, 6, 8168. [Google Scholar]
33.
Kai L, Sonal, Heermann T, Schwille P.  Reconstitution of a reversible membrane switch via prenylation by one-pot cell-free expression.  ACS Synth. Biol. 2023, 12, 108–119. [Google Scholar]
34.
Gupta MD, Flaskamp Y, Roentgen R, Juergens H, Gimenez JA, Albrecht F, et al. ALiCE: a versatile, high yielding and scalable eukaryotic cell-free protein synthesis (CFPS) system. bioRxiv 2022, 2022.11.10.515920, doi:10.1101/2022.11.10.515920.
Creative Commons

© 2024 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (https://creativecommons.org/licenses/by/4.0/).