Article Open Access

Nitrogen-controlled Valorization of Xylose-derived Compounds by Metabolically Engineered Corynebacterium glutamicum

Synthetic Biology and Engineering. 2023, 1(2), 10009;
Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
Authors to whom correspondence should be addressed.

Received: 04 May 2023    Accepted: 25 May 2023    Published: 31 May 2023   


The implementation of bioprocesses in an economically feasible and industrial competitive manner requires the optimal allocation of resources for a balanced distribution between biomass formation and product synthesis. The decoupling of growth and production in two-stage bioprocesses, aiming to ensure sufficient growth before the onset of production, is particularly relevant when target products inhibit growth. In order to avoid expensive inducer molecules, continuing process monitoring, elaborate individual process optimization, and strain engineering, we developed and applied nitrogen deprivation-induced expression of genes for product biosynthesis. Two native nitrogen deprivation-inducible promoters were identified and shown to function for dynamic growth-decoupled gene expression or CRISPRi-mediated gene knockdown in C. glutamicum with superior induction factors than the standard IPTG-inducible Ptrc promoter. Valorization of xylose to produce either the sugar acid xylonic acid or the sugar alcohol xylitol from xylose as sole source of carbon and energy was demonstrated. Competitive titers of up to 34 g·L−1 xylonate and 13 g·L−1 xylitol were achieved in two-stage processes. We discussed that the transfer to bioprocesses with C. glutamicum using carbon sources other than xylose appears straightforward in particular regarding production of growth-inhibitory compounds by their growth-decoupled fermentative production.


Dahmen N, Lewandowski I, Zibek S, Weidtmann A. Integrated lignocellulosic value chains in a growing bioeconomy: Status quo and perspectives. GCB Bioenergy 2019, 11, 107–117. [Google Scholar]
Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM. Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum Appl. Microbiol. Biotechnol. 2011, 92, 985–996. [Google Scholar]
Kirimura K, Honda Y, Hattori T. Gluconic and Itaconic Acids. In Comprehensive Biotechnology, 2nd ed.; Moo-Young M, Ed.; Academic Press: Burlington, NJ, USA, 2011; pp. 143–147.
Toivari MH, Ruohonen L, Richard P, Penttilä M, Wiebe MG. Saccharomyces cerevisiae engineered to produce D-xylonate. Appl. Microbiol. Biotechnol. 2010, 88, 751–760. [Google Scholar]
Chun B-W; Dair B, Macuch PJ, Wiebe D, Porteneuve C, Jeknavorian A. The development of cement and concrete additive.  Appl. Biochem. Biotechnol. 2006, 131, 645–658. [Google Scholar]
Millner OE, Clarke RP, Titus GR. Clarifiers for Polyolefins and Polyolefin Compositions Containing Same. US Patent US5302643A, 1994.
Zamora F, Bueno M, Molina I, Iribarren JI, Muñoz-Guerra S, Galbis JA. Stereoregular Copolyamides Derived from D-Xylose and L-Arabinose.  Macromolecules 2000, 33, 2030–2038. [Google Scholar]
Markham RG. Compositions and Methods for Administering Therapeutically Active Compounds. US Patent US5070085A, 1991.
Niu W, Molefe MN, Frost JW. Microbial Synthesis of the Energetic Material Precursor 1,2,4-Butanetriol.  J. Am. Chem. Soc. 2003, 125, 12998–12999. [Google Scholar]
Wang J, Shen X, Jain R, Wang J, Yuan Q, Yan Y. Establishing a novel biosynthetic pathway for the production of 3,4-dihydroxybutyric acid from xylose in Escherichia coli Metab. Eng. 2017, 41, 39–45. [Google Scholar]
Governo AT, Proença L, Parpot P, Lopes MIS, Fonseca ITE. Electro-oxidation of D-xylose on platinum and gold electrodes in alkaline medium.  Electrochim. Acta 2004, 49, 1535–1545. [Google Scholar]
Trichez D, Carneiro CVGC, Braga M, Almeida JRM. Recent progress in the microbial production of xylonic acid. World J. Microbiol. Biotechnol. 2022, 38, 127. [Google Scholar]
Buchert J, Viikari L, Linko M, Markkanen P. Production of xylonic acid by Pseudomonas fragi. Biotechnol. Lett. 1986, 8, 541–546. [Google Scholar]
Wang C, Wei D, Zhang Z, Wang D, Shi J, Kim CH, et al. Production of xylonic acid by Klebsiella pneumoniae Appl. Microbiol. Biotechnol. 2016, 100, 10055–10063. [Google Scholar]
Bondar M, da Fonseca MMR, Cesário MT. Xylonic acid production from xylose by Paraburkholderia sacchari Biochem. Eng. J. 2021, 170, 107982. [Google Scholar]
Buchert J, Puls J, Poutanen K. Comparison of Pseudomonas fragi and Gluconobacter oxydans for production of xylonic acid from hemicellulose hydrolyzates.  Appl. Microbiol. Biotechnol. 1988, 28, 367–372. [Google Scholar]
Liu H, Valdehuesa KNG, Nisola GM, Ramos KRM, Chung W-J. High yield production of D-xylonic acid from D-xylose using engineered Escherichia coli Bioresour. Technol. 2012, 115, 244–248. [Google Scholar]
Sundar MSL, Susmitha A, Rajan D, Hannibal S, Sasikumar K, Wendisch VF, et al. Heterologous expression of genes for bioconversion of xylose to xylonic acid in Corynebacterium glutamicum and optimization of the bioprocess. AMB Express 2020, 10, 68. [Google Scholar]
Karl T. Technology of Main Ingredients—Sweeteners and Lipids. In The Technology of Wafers and Waffles I—Operational Aspects, 1st ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 123–225.
Mussatto SI. Application of xylitol in food formulations and benefits for health. In D-Xylitol, 1st ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 2012; pp. 309–323.
Delgado Arcaño Y, Valmaña García OD, Mandelli D, Carvalho WA, Magalhães Pontes LA. Xylitol: A review on the progress and challenges of its production by chemical route.  Catal. Today 2020, 344, 2–14. [Google Scholar]
Park Y-C, Oh EJ, Jo J-H, Jin Y-S, Seo J-H. Recent advances in biological production of sugar alcohols. Curr. Opin. Biotechnol. 2016, 37, 105–113. [Google Scholar]
Umai D, Kayalvizhi R, Kumar V, Jacob S. Xylitol: Bioproduction and Applications-A Review.  Front. Sustain. 2022, 3, 826190. [Google Scholar]
Yoshitake J, Shimamura M, Imai T. Xylitol Production by a Corynebacterium Species.  Agric. Biol. Chem. 1973, 37, 2251–2259. [Google Scholar]
Kumar V, Krishania M, Preet Sandhu P, Ahluwalia V, Gnansounou E, Sangwan RS. Efficient detoxification of corn cob hydrolysate with ion-exchange resins for enhanced xylitol production by Candida tropicalis MTCC 6192.  Biores. Technol. 2018, 251, 416–419. [Google Scholar]
Sasaki M, Jojima T, Inui M, Yukawa H. Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation.  Appl. Microbiol. Biotechnol. 2010, 86, 1057–1066. [Google Scholar]
Wendisch VF. Metabolic engineering advances and prospects for amino acid production.  Metab. Eng. 2020, 58, 17–34. [Google Scholar]
Lee J-H, Wendisch VF. Production of amino acids–Genetic and metabolic engineering approaches.  Biores. Technol. 2017, 245, 1575–1587. [Google Scholar]
Sasaki M, Jojima T, Inui M, Yukawa H. Simultaneous utilization of D-cellobiose, D-glucose, and D-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions.  Appl. Microbiol. Biotechnol. 2008, 81, 691–699. [Google Scholar]
Song Y, Matsumoto K, Yamada M, Gohda A, Brigham CJ, Sinskey AJ, et al. Engineered Corynebacterium glutamicum as an endotoxin-free platform strain for lactate-based polyester production.  Appl. Microbiol. Biotechnol. 2012, 93, 1917–1925. [Google Scholar]
Wolf S, Becker J, Tsuge Y, Kawaguchi H, Kondo A, Marienhagen J, et al. Advances in metabolic engineering of Corynebacterium glutamicum to produce high-value active ingredients for food, feed, human health, and well-being.  Essays Biochem. 2021, 65, 197–212. [Google Scholar]
Hu M, Liu F, Wang Z, Shao M, Xu M, Yang T, et al. Sustainable isomaltulose production in Corynebacterium glutamicum by engineering the thermostability of sucrose isomerase coupled with one-step simplified cell immobilization.  Front. Microbiol. 2022, 13, 979079. [Google Scholar]
Shin K-C, Sim D-H, Seo M-J, Oh D-K. Increased Production of Food-Grade D-Tagatose from D-Galactose by Permeabilized and Immobilized Cells of Corynebacterium glutamicum, a GRAS Host, Expressing D-Galactose Isomerase from Geobacillus thermodenitrificans J. Agric. Food Chem. 2016, 64, 8146–8153. [Google Scholar]
Shyamkumar R, Moorthy IG, Ponmurugan K, Baskar R. Production of L-glutamic Acid with Corynebacterium glutamicum (NCIM 2168) and Pseudomonas reptilivora (NCIM 2598): A Study on Immobilization and Reusability.  Avicenna J. Med. Biotechnol. 2014, 6, 163–168. [Google Scholar]
Tsuge Y, Matsuzawa H. Recent progress in production of amino acid‐derived chemicals using Corynebacterium glutamicum World J. Microbiol. Biotechnol. 2021, 37, 49. [Google Scholar]
Wördemann R, Wiefel L, Wendisch VF, Steinbüchel A. Incorporation of alternative amino acids into cyanophycin by different cyanophycin synthetases heterologously expressed in Corynebacterium glutamicum AMB Express 2021, 11, 55. [Google Scholar]
Becker J, Wittmann C. Diamines for Bio-Based Materials. In Industrial Biotechnology: Products and Processes; Wiley-VCH: Weinheim, Germany, 2016; pp. 391–409.
Hüser AT, Chassagnole C, Lindley ND, Merkamm M, Guyonvarch A, Elisáková V, et al. Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling.  Appl. Environ. Microbiol. 2005, 71, 3255–3268. [Google Scholar]
Wieschalka S, Blombach B, Bott M, Eikmanns BJ. Bio-based production of organic acids with Corynebacterium glutamicum Microb. Biotechnol. 2013, 6, 87–102. [Google Scholar]
Inui M, Kawaguchi H, Murakami S, Vertes A, Yukawa H. Metabolic Engineering of Corynebacterium glutamicum for Fuel Ethanol Production under Oxygen-Deprivation Conditions.  J. Mol. Microbiol. Biotechnol. 2004, 8, 243–254. [Google Scholar]
Zahoor A, Lindner SN, Wendisch VF. Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products.  Comput. Struct. Biotechnol. J. 2012, 3, e201210004. [Google Scholar]
Jakoby M, Nolden L, Meier-Wagner J, Krämer R, Burkovski A. AmtR, a global repressor in the nitrogen regulation system of Corynebacterium glutamicum Mol. Microbiol. 2000, 37, 964–977. [Google Scholar]
Beckers G, Strösser J, Hildebrandt U, Kalinowski J, Farwick M, Krämer R, et al. Regulation of AmtR-controlled gene expression in Corynebacterium glutamicum: mechanism and characterization of the AmtR regulon.  Mol. Microbiol. 2005, 58, 580–595. [Google Scholar]
Taylor ND, Garruss AS, Moretti R, Chan S, Arbing MA, Cascio D, et al. Engineering an allosteric transcription factor to respond to new ligands.  Nat. Methods 2016, 13, 177–183. [Google Scholar]
Briand L, Marcion G, Kriznik A, Heydel JM, Artur Y, Garrido C, et al.  A self-inducible heterologous protein expression system in Escherichia coli Sci. Rep. 2016, 6, 33037. [Google Scholar]
Chubukov V, Sauer U. Environmental Dependence of Stationary-Phase Metabolism in Bacillus subtilis and Escherichia coli Appl. Environ. Microbiol. 2014, 80, 2901–2909. [Google Scholar]
Burg JM, Cooper CB, Ye Z, Reed BR, Moreb EA, Lynch MD. Large-scale bioprocess competitiveness: the potential of dynamic metabolic control in two-stage fermentations.  Curr. Opin. Chem. Eng. 2016, 14, 121–136. [Google Scholar]
Choudhary S, Schmidt-Dannert C. Applications of quorum sensing in biotechnology.  Appl. Microbiol. Biotechnol. 2010, 86, 1267–1279. [Google Scholar]
Stülke J, Hillen W. Carbon catabolite repression in bacteria. Curr. Opin. Microbiol. 1999, 2, 195–201. [Google Scholar]
Studier FW. Protein production by auto-induction in high density shaking cultures.  Protein Expr. Purif. 2005, 41, 207–234. [Google Scholar]
Studier FW. Stable expression clones and auto-induction for protein production in E. coli. In Structural Genomics; Springer Nature: Berlin, Germany, 2014; Volume 1091.
Tahara N, Tachibana I, Takeo K, Yamashita S, Shimada A, Hashimoto M, et al. Boosting Auto-Induction of Recombinant Proteins in Escherichia coli with Glucose and Lactose Additives. Protein Pept. Lett. 2021, 28, 1180–1190. [Google Scholar]
Yan Q, Han L, Liu X, You C, Zhou S, Zhou Z. Development of an auto-inducible expression system by nitrogen sources switching based on the nitrogen catabolite repression regulation.  Microb. Cell Fact. 2022, 21, 73. [Google Scholar]
Huber R, Roth S, Rahmen N, Büchs J. Utilizing high-throughput experimentation to enhance specific productivity of an E. coli T7 expression system by phosphate limitation.  BMC Biotechnol. 2011, 11, 22. [Google Scholar]
Hanahan D. Studies on transformation of Escherichia coli with plasmids.  J. Mol. Biol. 1983, 166, 557–580. [Google Scholar]
Eggeling L, Bott M. Handbook of Corynebacterium glutamicum, 1st ed.; CRC Press: Boca Raton, FL, USA, 2005.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, et al. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.  J. Biotechnol. 2003, 104, 5–25. [Google Scholar]
Henke NA, Krahn I, Wendisch VF. Improved Plasmid-Based Inducible and Constitutive Gene Expression in Corynebacterium glutamicum Microorganisms 2021, 9, 204. [Google Scholar]
Werner F, Schwardmann LS, Siebert D, Rückert-Reed C, Kalinowski J, Wirth M, et al. Metabolic engineering of C. glutamicum for fatty alcohol production from glucose and wheat straw hydrolysate. In Advances in Lignocellulosic Biofuel Production Systems; Woodhead Publishing: Sawston, UK, 2023.
Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum Gene 1994, 145, 69–73. [Google Scholar]
Kirchner O, Tauch A. Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum J. Biotechnol. 2003, 104, 287–299. [Google Scholar]
Göttl V, Schmitt I, Braun K, Peters-Wendisch P, Wendisch VF, Henke NA. CRISPRi-library guided target identification for engineering carotenoid production by Corynebacterium glutamicum Microorganisms 2021, 9, 670. [Google Scholar]
Eikmanns BJ, Thum-Schmitz N, Eggeling L, Lüdtke K-U, Sahm H. Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase.  Microbiology 1994, 140, 1817–1828. [Google Scholar]
Cetnar DP, Salis HM. Systematic Quantification of Sequence and Structural Determinants Controlling mRNA stability in Bacterial Operons.  ACS Synth. Biol. 2021, 10, 318–332. [Google Scholar]
Blin K, Pedersen LE, Weber T, Lee SY. CRISPy-web: An online resource to design sgRNAs for CRISPR applications.  Synth. Syst. Biotechnol. 2016, 1, 118–121. [Google Scholar]
Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases.  Nat. Methods 2009, 6, 343–345. [Google Scholar]
Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1989.
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.  Anal. Biochem. 1976, 72, 248–254. [Google Scholar]
Sánchez-Moreno I, Benito-Arenas R, Montero-Calle P, Hermida C, García-Junceda E, Fernández-Mayoralas A. Simple and Practical Multigram Synthesis of d-Xylonate Using a Recombinant Xylose Dehydrogenase.  ACS Omega 2019, 4, 10593–10598. [Google Scholar]
Cleto S, Jensen JV, Wendisch VF, Lu TK. Corynebacterium glutamicum Metabolic Engineering with CRISPR Interference (CRISPRi).  ACS Synth. Biol. 2016, 5, 375–385. [Google Scholar]
Tombolini R, Unge A, Davey ME, de Bruijn FJ, Jansson JK. Flow cytometric and microscopic analysis of GFP-tagged Pseudomonas fluorescens bacteria.  FEMS Microbiol. Ecol. 1997, 22, 17–28. [Google Scholar]
Dhar KS, Wendisch VF, Nampoothiri KM. Engineering of Corynebacterium glutamicum for xylitol production from lignocellulosic pentose sugars.  J. Biotechnol. 2016, 230, 63–71. [Google Scholar]
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF. Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.  Microb. Biotechnol. 2013, 6, 131–140. [Google Scholar]
Radek A, Müller M-F, Gätgens J, Eggeling L, Krumbach K, Marienhagen J, et al. Formation of xylitol and xylitol-5-phosphate and its impact on growth of d-xylose-utilizing Corynebacterium glutamicum strains.  J. Biotechnol. 2016, 231, 160–166. [Google Scholar]
Stano NM, Patel SS. T7 lysozyme represses T7 RNA polymerase transcription by destabilizing the open complex during initiation.  J. Biol. Chem. 2004, 279, 16136–16143. [Google Scholar]
Lubitz D, Wendisch VF. Ciprofloxacin triggered glutamate production by Corynebacterium glutamicum BMC Microbiol. 2016, 16, 235. [Google Scholar]
Askenazi M, Driggers EM, Holtzman DA, Norman TC, Iverson S, Zimmer DP, et al. Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat. Biotechnol. 2003, 21, 150–156. [Google Scholar]
Li S, Ye Z, Moreb EA, Hennigan JN, Castellanos DB, Yang T, et al. Dynamic control over feedback regulatory mechanisms improves NADPH flux and xylitol biosynthesis in engineered E. coli Metab. Eng. 2021, 64, 26–40. [Google Scholar]
Wendisch VF, Bott M. Phosphorus Metabolism and its Regulation. In Corynebacteria: Genomics and Molecular Biology, 1st ed, Ed.; Caister Academic Press: Poole, UK, 2008; pp. 203–216.
Yim SS, Choi JW, Lee SH, Jeon EJ, Chung W-J, Jeong KJ. Engineering of Corynebacterium glutamicum for Consolidated Conversion of Hemicellulosic Biomass into Xylonic Acid.  Biotechnol. J. 2017, 12, 1700040. [Google Scholar]
Tenhaef N, Brüsseler C, Radek A, Hilmes R, Unrean P, Marienhagen J, Noack S. Production of d-xylonic acid using a non-recombinant Corynebacterium glutamicum strain.  Bioresour. Technol. 2018, 268, 332–339. [Google Scholar]
Krings E, Krumbach K, Bathe B, Kelle R, Wendisch VF, Sahm H, et al. Characterization of myo-Inositol Utilization by Corynebacterium glutamicum: the Stimulon, Identification of Transporters, and Influence on L-Lysine Formation.  J. Bacteriol. 2006, 188, 8054–8061. [Google Scholar]
Zhou X, Han J, Xu Y. Electrodialytic bioproduction of xylonic acid in a bioreactor of supplied-oxygen intensification by using immobilized whole-cell Gluconobacter oxydans as biocatalyst.  Bioresour. Technol. 2019, 282, 378–383. [Google Scholar]
Susmitha A, Arya JS, Sundar L, Maiti KK, Nampoothiri KM. Sortase E-mediated site-specific immobilization of green fluorescent protein and xylose dehydrogenase on gold nanoparticles.  J. Biotechnol. 2023, 367, 11–19. [Google Scholar]
Akinterinwa O, Cirino PC. Heterologous expression of d-xylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose.  Metab. Eng. 2009, 11, 48–55. [Google Scholar]
Tenhaef N, Kappelmann J, Eich A, Weiske M, Brieß L, Brüsseler C, et al. Microaerobic growth-decoupled production of α-ketoglutarate and succinate from xylose in a one-pot process using Corynebacterium glutamicum Biotechnol. J. 2021, 16, 2100043. [Google Scholar]
Dugar D, Stephanopoulos G. Relative potential of biosynthetic pathways for biofuels and bio-based products.  Nat. Biotechnol. 2011, 29, 1074–1078. [Google Scholar]
Kabus A, Georgi T, Wendisch VF, Bott M. Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation.  Appl. Microbiol. Biotechnol. 2007, 75, 47–53. [Google Scholar]
Creative Commons

© 2024 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (