Article Open Access

Bio-Based Production of Uroporphyrin in Escherichia coli

Synthetic Biology and Engineering. 2024, 2(1), 10002; https://doi.org/10.35534/sbe.2024.10002
Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
*
Authors to whom correspondence should be addressed.

Received: 14 Dec 2023    Accepted: 01 Feb 2024    Published: 06 Feb 2024   

Abstract

Uroporphyrin (UP) is a porphyrin compound with medical applications and a key precursor for heme biosynthesis. However, there is no biosynthetic strategy for UP production. In this study, we present a novel bioprocess for enhanced production of UP in engineered Escherichia coli. We first implemented the Shemin/C4 pathway heterologously in an E. coli strain with an enlarged intracellular pool of succinyl-CoA. Using a plasmid with the trc promoter regulating the expression of a synthesized gene operon, the effects of key pathway genes, including hemA, hemB, hemC, and hemD, on UP biosynthesis were characterized. By cultivating the resulting engineered E. coli strains in a batch bioreactor with 30 g/L glycerol under aerobic conditions, up to 901.9 mg/L UP was produced. Most of the synthesized UP was extracellularly secreted with a high purity more than 80 wt%, facilitating its downstream purification. The study paves the way for large-scale bio-based production of UP using synthetic biology and metabolic engineering strategies.

References

1.
Cook LP, Brewer G, Wong-Ng W. Structural Aspects of Porphyrins for Functional Materials Applications. Crystals 2017, 7, 223. [Google Scholar]
2.
Shi Y, Zhang F, Linhardt R. Porphyrin-based compounds and their applications in materials and medicine. Dyes Pigm. 2021, 188, 109136. [Google Scholar]
3.
Zhou Q, Yamada A, Feng Q, Hoskins A, Dunietz BD, Lewis KM. Modification of Molecular Conductance by in Situ Deprotection of Thiol-Based Porphyrin. ACS Appl. Mater. Interfaces 2017, 9, 15901–15906. [Google Scholar]
4.
Mondal S, Pain T, Sahu K, Kar S. Large-Scale Green Synthesis of Porphyrins. ACS Omega 2021, 6, 22922–22936. [Google Scholar]
5.
Hiroto S, Miyake Y, Shinokubo H. Synthesis and Functionalization of Porphyrins through Organometallic Methodologies. Chem. Rev. 2017, 117, 2910–3043. [Google Scholar]
6.
Macdonald SF, Stedman RJ. The Synthesis of Uroporphyrin I. J. Am. Chem. Soc. 1953, 75, 3040–3041. [Google Scholar]
7.
Rebeiz CA, Haidar MA, Yaghi M. Porphyrin biosynthesis in cell-free homogenates from higher plants. Plant Physiol. 1970, 46, 543–549. [Google Scholar]
8.
Goldberg A, Rimington C. Experimentally produced porphyria in animals. Proc. R. Soc. Lond. B Biol. Sci. 1955, 143, 257–279. [Google Scholar]
9.
Hassner A, Namboothiri I. MACDONALD Porphyrin Synthesis to MYERS–SAITO Cycloaromatization. In Organic Syntheses Based on Name Reactions (Third Edition); Elsevier: Amsterdam, The Netherlands; 2012, pp. 297–333.
10.
Kwon SJ, de Boer AL, Petri R, Schmidt-Dannert C. High-Level Production of Porphyrins in Metabolically Engineered Escherichia coli: Systematic Extension of a Pathway Assembled from Overexpressed Genes Involved in Heme Biosynthesis. Appl. Environ. Microbiol. 2003, 69, 4875–4883. [Google Scholar]
11.
Moulin M, Smith A. Regulation of tetrapyrrole biosynthesis in higher plants. Biochem. Soc. Trans. 2005, 33, 737–742. [Google Scholar]
12.
Wu L, Moteki T, Gokhale AA, Flaherty DW, Toste FD. Production of Fuels and Chemicals from Biomass: Condensation Reactions and Beyond. Chem 2016, 1, 32–58. [Google Scholar]
13.
Kořený L, Oborník M, Horáková E, Waller RF, Lukeš J. The convoluted history of haem biosynthesis. Biol. Rev. 2022, 97, 141–162. [Google Scholar]
14.
Jiang M, Hong K, Mao Y, Ma H, Chen T, Wang Z. Natural 5-Aminolevulinic Acid: Sources, Biosynthesis, Detection and Applications. Front. Bioeng. Biotechnol. 2022, 10, 841443. [Google Scholar]
15.
Sharma R, Viana SM, Ng DKP, Kolli BK, Chang KP, de Oliveira CI. Photodynamic inactivation of Leishmania braziliensis doubly sensitized with uroporphyrin and diamino-phthalocyanine activates effector functions of macrophages in vitro. Sci. Rep. 2020, 10, 17065. [Google Scholar]
16.
Miscevic D, Mao JY, Kefale T, Abedi D, Moo-Young M, Perry Chou C. Strain engineering for high-level 5-aminolevulinic acid production in Escherichia coli. Biotechnol. Bioeng. 2021, 118, 30–42. [Google Scholar]
17.
Miscevic D, Mao JY, Moo-Young M, Chou CP. High‐level heterologous production of propionate in engineered Escherichia coli. Biotechnol. Bioeng. 2020, 117, 1304–1315. [Google Scholar]
18.
Miscevic D, Mao JY, Kefale T, Abedi D, Huang CC, Moo-Young M, et al. Integrated strain engineering and bioprocessing strategies for high-level bio-based production of 3-hydroxyvalerate in Escherichia coli. Appl. Microbiol. Biotechnol. 2020, 104, 5259–5272. [Google Scholar]
19.
Lall D, Miscevic D, Bruder M, Westbrook A, Aucoin M, Moo-Young M, et al. Strain engineering and bioprocessing strategies for biobased production of porphobilinogen in Escherichia coli. Bioresour. Bioprocess 2021, 8, 122. [Google Scholar]
20.
Miscevic D, Mao JY, Mozell B, Srirangan K, Abedi D, Moo-Young M, et al. Bio-based production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with modulated monomeric fraction in Escherichia coli. Appl. Microbiol. Biotechnol. 2021, 105, 1435–1446. [Google Scholar]
21.
Zhang J, Kang Z, Chen J, Du G. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Sci. Rep. 2015, 5, 8584. [Google Scholar]
22.
Zappa S, Li K, Bauer CE. The Tetrapyrrole Biosynthetic Pathway and Its Regulation in Rhodobacter capsulatus; In Recent Advances in Phototrophic Prokaryotes; Springer: New York, NY, USA. 2010; pp. 229–250.
23.
Davy AM, Kildegaard HF, Andersen MR. Cell Factory Engineering. Cell Syst. 2017, 4, 262–275. [Google Scholar]
24.
Mcarthur GH, Fong SS. Toward Engineering Synthetic Microbial Metabolism. J. Biomed. Biotechnol. 2010, 2010, 1–10. [Google Scholar]
25.
Westbrook AW, Miscevic D, Kilpatrick S, Bruder MR, Moo-Young M, Chou CP. Strain engineering for microbial production of value-added chemicals and fuels from glycerol. Biotechnol. Adv. 2019, 37, 538–568. [Google Scholar]
26.
Srirangan K, Liu X, Westbrook A, Akawi L, Pyne ME, Moo-Young M, et al. Biochemical, genetic, and metabolic engineering strategies to enhance coproduction of 1-propanol and ethanol in engineered Escherichia coli. Appl. Microbiol. Biotechnol. 2014, 98, 9499–9515. [Google Scholar]
27.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 2009, 6, 343–345. [Google Scholar]
28.
Neidhardt FC, Bloch PL, Smith DF. Culture medium for enterobacteria. J. Bacteriol. 1974, 119, 736–747. [Google Scholar]
29.
Mauzerall D, Granick S. The Occurrence and Determination of δ-Aminolevulinic Acid and Porphobilinogen in Urine. J. Biol. Chem. 1956, 219, 435–446. [Google Scholar]
30.
Dailey HA, Dailey TA, Gerdes S, Jahn D, Jahn M, O'Brian MR, et al. Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product. Microbiol. Mol. Biol. Rev. 2017, 81, e00048-16. [Google Scholar]
Creative Commons

© 2024 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (https://creativecommons.org/licenses/by/4.0/).