Article Open Access

Analysis of a σ54 Transcription Factor L420P Mutation in Context of Increased Organic Nitrogen Tolerance of Photofermentative Hydrogen Production in Cereibacter sphaeroides Strain 2.4.1 Substrain H2

Synthetic Biology and Engineering. 2024, 2(1), 10001; https://doi.org/10.35534/sbe.2024.10001
Faculty of Computer and Life Sciences, University of Applied Sciences Mittweida, Technikumplatz 17, 09648 Mittweida, Germany
*
Authors to whom correspondence should be addressed.

Received: 14 Dec 2023    Accepted: 19 Jan 2024    Published: 23 Jan 2024   

Abstract

Photofermentative hydrogen production with non-sulfur purple bacteria like Cereibacter sphaeroides (formerly Rhodobacter sphaeroides) is a promising and sustainable process to convert organic waste into the energy carrier hydrogen gas. However, this conversion is inhibited by elevated organic nitrogen concentrations in the substrate, which limits its applicability to nitrogen-poor organic waste. We present genomic and transcriptomic insights into a substrain of Cereibacter sphaeroides strain 2.4.1 that shows unexpected high levels of photofermentative hydrogen evolution when fed with glutamate. Genome sequencing revealed 222 single nucleotide variances (SNVs) between the reference genome of C. sphaeroides strain 2.4.1 and the analyzed substrain H2. These affect 61 protein coding genes. A leucine-proline exchange is present in the σ54 factor (rpoN2 gene), a global hydrogen and nitrogen metabolism regulator. We propose a model how this mutation alters DNA-binding properties that explain the unexpected organic nitrogen tolerance of hydrogen production. Transcriptomic analyses under varying glutamate concentrations support this finding. Thus, we present the first thorough genomic and transcriptomic analysis of a Cereibacter strain that shows promising metabolic characteristics for biotechnological hydrogen gas production from organic waste. These results suggest a potential target for strain optimization. Possibly, our key finding can be transferred to other hydrogen producing microorganisms.

References

1.
Roy S, Das D. Biohythane production from organic wastes: present state of art. Environ. Sci. Pollut. Res. Int. 2016, 23, 9391–9410. [Google Scholar]
2.
Levin D. Biohydrogen production: prospects and limitations to practical application. Int. J. Hydrog. Energy 2004, 29, 173–185. [Google Scholar]
3.
Dincer I, Acar C. Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrog. Energy 2015, 40, 11094–11111. [Google Scholar]
4.
van Loosdrecht MC, Brdjanovic D. Water treatment. Anticipating the next century of wastewater treatment. Science 2014, 344, 1452–1453. [Google Scholar]
5.
Suresh G, Sasikala C, Ramana CV. Reclassification of Gemmobacter changlensis to a new genus as Cereibacter changlensis gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 2015, 65, 794–798. [Google Scholar]
6.
Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM, Tindall BJ, et al. Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria. Front. Microbiol. 2020, 11, 468. [Google Scholar]
7.
Weber J, Krujatz F, Hilpmann G, Grützner S, Herrmann J, Thierfelder S, et al. Biotechnological hydrogen production by photosynthesis. Eng. Life Sci. 2014, 14, 592–606. [Google Scholar]
8.
Adessi A, De Philippis R. Photobioreactor design and illumination systems for H2 production with anoxygenic photosynthetic bacteria: A review. Int. J. Hydrog. Energy 2014, 39, 3127–3141. [Google Scholar]
9.
Orsi E, Beekwilder J, Eggink G, Kengen S. Weusthuis RA. The transition of Rhodobacter sphaeroides into a microbial cell factory. Biotechnol. Bioeng. 2021, 118, 531–541. [Google Scholar]
10.
Kontur WS, Schackwitz WS, Ivanova N, Martin J, Labutti K, Deshpande S, et al. Revised sequence and annotation of the Rhodobacter sphaeroides 2.4.1 genome. J. Bacteriol. 2012, 194, 7016–7017. [Google Scholar]
11.
Yasin NH, Mumtaz T, Hassan MA, Rahman N. Food waste and food processing waste for biohydrogen production: a review. J. Environ. Manag. 2013, 130, 375–385. [Google Scholar]
12.
Kim M-S, Lee D-Y, Kim D-H. Continuous hydrogen production from tofu processing waste using anaerobic mixed microflora under thermophilic conditions. Int. J. Hydrog. Energy 2011, 36, 8712–8718. [Google Scholar]
13.
Davila-Vazquez G, Cota-Navarro CB, Rosales-Colunga LM, de León-Rodríguez A, Razo-Flores E. Continuous biohydrogen production using cheese whey: Improving the hydrogen production rate. Int. J. Hydrog. Energy 2009, 34, 4296–4304. [Google Scholar]
14.
Fang H, Zhu H, Zhang T. Phototrophic hydrogen production from glucose by pure and co-cultures of Clostridium butyricum and Rhodobacter sphaeroides. Int. J. Hydrog. Energy 2006, 31, 2223–2230. [Google Scholar]
15.
Doi T, Matsumoto H, Abe J, Morita S. Application of rice rhizosphere microflora for hydrogen production from apple pomace. Int. J. Hydrog. Energy 2010, 35, 7369–7376. [Google Scholar]
16.
Argun H, Kargi F. Effects of sludge pre-treatment method on bio-hydrogen production by dark fermentation of waste ground wheat. Int. J. Hydrog. Energy 2009, 34, 8543–8548. [Google Scholar]
17.
Kontur WS, Ziegelhoffer EC, Spero MA, Imam S, Noguera DR, Donohue TJ. Pathways involved in reductant distribution during photobiological H2 production by Rhodobacter sphaeroides. Appl. Environ. Microbiol. 2011, 77, 7425–7429. [Google Scholar]
18.
Hunter CN, Daldal F, Thurnauer MC, Beatty JT. The Purple Phototrophic Bacteria; Springer: Dordrecht, The Netherlands, 2009.
19.
Obeid J, Magnin J, Flaus J, Adrot O, Willison J, Zlatev R. Modelling of hydrogen production in batch cultures of the photosynthetic bacterium Rhodobacter capsulatus. Int. J. Hydrog. Energy 2009, 34, 180–185. [Google Scholar]
20.
Krujatz F, Härtel P, Helbig K, Haufe N, Thierfelder S, Bley T, et al. Hydrogen production by Rhodobacter sphaeroides DSM 158 under intense irradiation. Bioresour. Technol. 2015, 175, 82–90. [Google Scholar]
21.
Gabrielyan L, Sargsyan H, Trchounian A. Novel properties of photofermentative biohydrogen production by purple bacteria Rhodobacter sphaeroides: Effects of protonophores and inhibitors of responsible enzymes. Microb. Cell Factor. 2015, 14, 131. [Google Scholar]
22.
McKinlay JB, Harwood CS. Photobiological production of hydrogen gas as a biofuel. Curr. Opin. Biotechnol. 2010, 21, 244–251. [Google Scholar]
23.
Androga DD, Özgür E, Eroglu I, Gündüz U, Yücel M. Significance of carbon to nitrogen ratio on the long-term stability of continuous photofermentative hydrogen production. Int. J. Hydrog. Energy 2011, 36, 15583–15594. [Google Scholar]
24.
Keskin T, Abo-Hashesh M, Hallenbeck PC. Photofermentative hydrogen production from wastes. Bioresour. Technol. 2011, 102, 8557–8568. [Google Scholar]
25.
Leidenfrost RM, Wappler N, Wünschiers R. Draft Genome Assembly of Rhodobacter sphaeroides 2.4.1 Substrain H2 from Nanopore Data. Microbiol. Resour. Announc. 2020, 9, e00414-20. [Google Scholar]
26.
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar]
27.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar]
28.
Darling AC, Mau B, Blattner FR, Perna NT. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar]
29.
Ng PC, Henikoff S. Predicting Deleterious Amino Acid Substitutions. Genome Res. 2001, 11, 863–874. [Google Scholar]
30.
Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, et al. Artemis: sequence visualization and annotation. Bioinformatics 2000, 16, 944–945. [Google Scholar]
31.
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010, 11, R106. [Google Scholar]
32.
Glyde R, Ye F, Darbari VC, Zhang N, Buck M, Zhang X. Structures of RNA Polymerase Closed and Intermediate Complexes Reveal Mechanisms of DNA Opening and Transcription Initiation. Mol. Cell 2017, 67, 106–116.e4. [Google Scholar]
33.
Hanson RM. Jmol—A paradigm shift in crystallographic visualization. J. Appl. Crystallogr. 2010, 43, 1250–1260. [Google Scholar]
34.
Mackenzie C, Choudhary M, Larimer FW, Predki PF, Stilwagen S, Armitage JP, et al. The home stretch, a first analysis of the nearly completed genome of Rhodobacter sphaeroides 2.4.1. Photosynth. Res. 2001, 70, 19–41. [Google Scholar]
35.
Choudhary M, Zanhua X, Fu YX, & Kaplan S. Genome Analyses of Three Strains of Rhodobacter sphaeroides: Evidence of Rapid Evolution of Chromosome II. J. Bacteriol. 2007, 189, 1914–1921. [Google Scholar]
36.
Porter SL, Wilkinson DA, Byles ED, Wadhams GH, Taylor S, et al. Genome sequence of Rhodobacter sphaeroides Strain WS8N. J. Bacteriol. 2011, 193, 4027–4028. [Google Scholar]
37.
Lim SK, Kim SJ, Cha SH, Oh YK, Rhee HJ, Kim MS, et al. Complete genome sequence of Rhodobacter sphaeroides KD131. J. Bacteriol. 2009, 191, 1118–1119. [Google Scholar]
38.
Ghosh T, Bose D, Zhang X. Mechanisms for activating bacterial RNA polymerase.  FEMS Microbiol. Rev. 2010, 34, 611–627. [Google Scholar]
39.
Österberg S, del Peso-Santos T, Shingler V. Regulation of alternative sigma factor use. Annu. Rev. Microbiol. 2011, 65, 37–55. [Google Scholar]
40.
Gruber TM, Gross CA. Multiple sigma subunits and the partitioning of bacterial transcription space. Annu. Rev. Microbiol. 2003, 57, 441–466. [Google Scholar]
41.
Merrick MJ. In a class of its own—The RNA polymerase sigma factor sigma 54 (sigma N). Mol. Microbiol. 1993, 10, 903–909. [Google Scholar]
42.
Francke C, Groot Kormelink T, Hagemeijer Y, Overmars L, Sluijter V, Moezelaar R, et al. Comparative analyses imply that the enigmatic Sigma factor 54 is a central controller of the bacterial exterior. BMC Genomics 2011, 12, 385. [Google Scholar]
43.
Poggio S, Osorio A, Dreyfus G, Camarena L. The four different σ54 factors of Rhodobacter sphaeroides are not functionally interchangeable. Mol. Microbiol. 2002, 46, 75–85. [Google Scholar]
44.
Bush M, Dixon R. The role of bacterial enhancer binding proteins as specialized activators of σ54-dependent transcription. Microbiol. Mol. Biol. Rev. 2012, 76, 497–529. [Google Scholar]
45.
Schumacher J, Joly N, Rappas M, Zhang X, Buck M. Structures and organisation of AAA+ enhancer binding proteins in transcriptional activation. J. Struct. Biol. 2006, 156, 190–199. [Google Scholar]
46.
Studholme DJ, Dixon R. Domain Architectures of σ54-Dependent Transcriptional Activators. J. Bacteriol. 2003, 185, 1757–1767. [Google Scholar]
47.
Poggio S, Osorio A, Dreyfus G, Camarena L. The flagellar hierarchy of Rhodobacter sphaeroides is controlled by the concerted action of two enhancer-binding proteins. Mol. Microbiol. 2005, 58, 969–983. [Google Scholar]
48.
Poggio S, Osorio A, Dreyfus G, Camarena L. Transcriptional specificity of RpoN1 and RpoN2 involves differential recognition of the promoter sequences and specific interaction with the cognate activator proteins. J. Biol. Chem. 2006, 281, 27205–27215. [Google Scholar]
49.
Meijer WG, Tabita FR. Isolation and characterization of the nifUSVW-rpoN gene cluster from Rhodobacter sphaeroides. J. Bacteriol. 1992, 174, 3855–3866. [Google Scholar]
50.
Dischert W, Vignais PM, Colbeau A. The synthesis of Rhodobacter capsulatus HupSL hydrogenase is regulated by the two‐component HupT/HupR system. Mol. Microbiol. 1999, 34, 995–1006. [Google Scholar]
51.
Franchi E, Tosi C, Scolla G, Penna GD, Rodriguez F, Pedroni PM. Metabolically engineered Rhodobacter sphaeroides RV strains for improved biohydrogen photoproduction combined with disposal of food wastes. Mar. Biotechnol. 2004, 6, 552–565. [Google Scholar]
52.
Ryu M-H, Hull NC, Gomelsky M. Metabolic engineering of Rhodobacter sphaeroides for improved hydrogen production. Int. J. Hydrog. Energy 2014, 39, 6384–6390. [Google Scholar]
53.
Mougiakos I, Orsi E, Ghiffary MR, Post W, de Maria A, Adiego-Perez B, et al. Efficient Cas9-based genome editing of Rhodobacter sphaeroides for metabolic engineering. Microb. Cell Fact. 2019, 18, 204. [Google Scholar]
54.
Zhang Y, Yuan J. CRISPR/Cas12a-mediated genome engineering in the photosynthetic bacterium Rhodobacter capsulatus. Microb. Biotechnol. 2021, 14, 2700–2710. [Google Scholar]
Creative Commons

© 2024 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (https://creativecommons.org/licenses/by/4.0/).