Perspective Open Access

A Perspective in Future Biomanufacturing: Challenges in Industrial Fermentation—Understanding and Controlling Microbial Lifespan and Aging

Synthetic Biology and Engineering. 2023, 1(3), 10019;
Shang-Tian Yang , *    Geng Wang ,    Zhen Qin ,   
William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
Authors to whom correspondence should be addressed.

Received: 27 Dec 2023    Accepted: 28 Dec 2023    Published: 29 Dec 2023   




Ackermann M, Stearns SC, Jenal U. Senescence in a bacterium with asymmetric division.  Science 2003, 300, 1920. [Google Scholar]
Stewart EJ, Madden R, Paul G, Taddei F. Aging and death in an organism that reproduces by morphologically symmetric division.  PLoS Biol. 2005, 3, e45. [Google Scholar]
Ksiazek K. Bacterial aging: From mechanistic basis to evolutionary perspective.  Cell. Mol. Life Sci. 2010, 67, 3131–3137. [Google Scholar]
Campisi J, d’Adda di Fagagna F. Cellular senescence: When bad things happen to good cells.  Nat. Rev. Mol. Cell Biol. 2007, 8, 729–740. [Google Scholar]
Hill SM, Hao X, Liu B, Nystrom T. Life-span extension by a metacaspase in the yeast Saccharomyces cerevisiae Science 2014, 344, 1389–1392. [Google Scholar]
Guo L, Diao W, Gao C, Hu G, Ding Q, Ye C, et al. Engineering Escherichia coli lifespan for enhancing chemical production.  Nat. Catal. 2020, 3, 307–318. [Google Scholar]
Orozco H, Matallana E, Aranda A. Genetic manipulation of longevity-related genes as a tool to regulate yeast life span and metabolite production during winemaking.  Microb. Cell Fact. 2013, 12, 1. [Google Scholar]
Yang H, Wang Z, Lin M, Yang ST. Propionic acid production from soy molasses by Propionibacterium acidipropionici: Fermentation kinetics and economic analysis.  Bioresour. Technol. 2018, 250, 1–9. [Google Scholar]
Cheng C, Zhou Y, Lin M, Wei P, Yang ST. Polymalic acid fermentation by Aureobasidium pullulans for malic acid production from soybean hull and soy molasses: Fermentation kinetics and economic analysis.  Bioresour. Technol. 2017, 223, 166–174. [Google Scholar]
Li J, Du Y, Bao T, Dong J, Tang IC, Shim H, et al. N-Butanol production from lignocellulosic biomass hydrolysates without detoxification by Clostridium tyrobutyricum Δack-adhE2 in a fibrous-bed bioreactor,  Bioresour. Technol. 2019, 289, 121749. [Google Scholar]
Lu C, Zhao J, Yang ST, Wei D. Fed-batch fermentation for N-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping.  Bioresour. Technol. 2012, 104, 380–387. [Google Scholar]
Wang Z, Jin Y, Yang ST. High cell density propionic acid fermentation with an acid tolerant strain of Propionibacterium acidipropionici Biotechnol. Bioeng. 2015, 112, 502–511. [Google Scholar]
Chang WL, Hou W, Xu M, Yang ST. High-rate continuous N-butanol production by Clostridium acetobutylicum from glucose and butyric acid in a single-pass fibrous-bed bioreactor. Biotechnol. Bioeng. 2022, 119, 3474–3486. [Google Scholar]
Wang Z, Sun J, Zhang A, Yang ST. Propionic acid fermentation. In Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers. John Wiley & Sons, Hoboken, NJ, USA; 2013; pp. 331–349.
Yang ST, Huang H, Tay A, Qin W, De Guzman L, San Nicolas EC. Extractive fermentation for the production of carboxylic acids. In Bioprocessing for Value-Added Products from Renewable Resources; Yang S.T. Ed.; Elsevier, Amsterdam, Netherlands; 2006; pp. 421–446.
Boyaval P, Corre C. Continuous fermentation of sweet whey permeate for propionic acid production in a CSTR with UF recycle.  Biotechnol. Lett. 1987, 9, 801–806. [Google Scholar]
Dishisha T, Ståhl A, Lundmark S, Hatti-Kaul R. An economical biorefinery process for propionic acid production from glycerol and potato juice using high cell density fermentation.  Bioresour. Technol. 2013, 135, 504–512. [Google Scholar]
Zou X, Cheng C, Feng J, Song X, Lin M, Yang ST. Biosynthesis of polymalic acid in fermentation: Advances and prospects for industrial application.  Crit. Rev. Biotechnol. 2019, 39, 408–421. [Google Scholar]
Zou X, Zhou Y, Yang ST. Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis.  Biotechnol. Bioeng. 2013, 110, 2105–2113. [Google Scholar]
Qin Z, Feng J, Li Y, Zheng Y, Moore C, Yang ST. Engineering the reductive tricarboxylic acid pathway in Aureobasidium pullulans for enhanced biosynthesis of poly-L-malic acid.  Bioresour. Technol. 2024, 393, 130122. [Google Scholar]
Zhao J, Lu C, Chen CC, Yang ST. Biological production of butanol and higher alcohols, in Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers; Yang ST, El-Enshasy HA, Thongchul N. Eds.; Wiley, Hoboken, NJ, USA; 2013; pp. 235–261.
Du G, Zhu C, Xu M, Yang ST, Xue C. Energy-efficient butanol production by Clostridium acetobutylicum with histidine kinase knockouts to improve strain tolerance and process robustness,  Green Chem. 2021, 23, 2155–2168. [Google Scholar]
Yu M, Zhang Y, Tang IC, Yang ST. Metabolic engineering of Clostridium tyrobutyricum for N-butanol production.  Metab. Eng. 2011, 13, 373–382. [Google Scholar]
Xu M, Zhao J, Yu L, Tang IC, Xue C, Yang ST. Engineering Clostridium acetobutylicum with a histidine kinase knockout for enhanced N-butanol tolerance and production.  Appl. Microbiol. Biotechnol. 2015, 99, 1011–1022. [Google Scholar]
Yoo M, Soucaille P. Trends in systems biology for the analysis and engineering of Clostridium acetobutylicum metabolism.  Trends Microbiol. 2020, 28, 118–140. [Google Scholar]
Li S, Huang L, Ke C, Pang Z, Liu L. Pathway dissection, regulation, engineering and application: Lessons learned from biobutanol production by solventogenic clostridia.  Biotechnol. Biofuels 2020, 13, 39. [Google Scholar]
Patakova P, Branska B, Vasylkivska M, Jureckova K, Musilova J, Provaznik I, et al. Transcriptomic studies of solventogenic clostridia, Clostridium acetobutylicum and Clostridium beijerinckii Biotechnol. Adv. 2022, 58, 107889. [Google Scholar]
Hanczyc, M. Engineering life: A review of synthetic biology.  Artificial Life 2020, 26, 260–273. [Google Scholar]
Creative Commons

© 2024 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (