Sort by

Found 16 results

Open Access

Article

26 July 2024

Current and Future Costs of Storage for Electricity in a Decarbonized Electricity System

As power systems globally are transitioning from fossil fuels to renewable sources, integrating energy storage becomes imperative to balance variable renewable electricity generation. The core objective of this paper is to conduct a comprehensive cost assessment of selected energy storage technologies from 2023 to 2050, focusing on the Austrian electricity market. Our method combines techno-economic assessment with the technological learning method to integrate various storage technologies into a renewable electricity system, using scenarios that account for decarbonization goals. Results indicate that pumped storage hydro exhibits none or negative learning effects, while lithium-ion batteries demonstrate significant investment cost decreases. Despite investment cost reductions, underground hydrogen storage continues to incur high total costs per kWh discharged due to low roundtrip efficiency, suggesting its future outlook depends on seasonal storage needs in fossil-free power systems. An important finding of this analysis underscores the importance of optimizing the ratio of electricity demand, renewable generation expansion and storage deployment for cost-effectiveness. Excessive storage deployment leads to lower utilization and higher costs, emphasizing the necessity of at least 1500 full-load hours for profitable operation across all storage systems. Strategic planning for optimal storage deployment is emphasized to optimize utilization and minimize costs.

Keywords: Storage costs; Technological learning; Pumped storage hydro; Battery storage; Underground hydrogen storage
Clean Energy Sustain.
2024,
2
(3), 10012; 
Open Access

Case Report

26 February 2024

‘Greening’ an Oil Exporting Country: A Hydrogen and Helium Closed-cycle Gas Turbines Case Study

Holistic decarbonisation requires collaborative efforts and substantial investments across diverse economic sectors. This study introduces an innovative national approach, blending technological insights and philosophical considerations to shape decarbonization policies and practices. Libya is the case study. The proposed framework involves submersible power stations with continuous-duty helium closed-cycle gas turbines to supply electricity demand and hydrogen. Extensive national data is analysed, incorporating factors such as sectoral consumption, sea temperature, and port locations. An analytical model is developed, providing a valuable foundation for realistic decarbonization scenarios. The model aims to maintain the benefits of current energy consumption, assuming a 2% growth rate, while assessing changes in a fully green economy. The results offer qualitative and quantitative insights on hydrogen use and an expected rise in electricity demand. Two scenarios are examined: self-sufficiency and replacing oil exports with hydrogen exports. This study provides a quantitative perspective on decarbonization, focusing on a submersible helium closed cycle gas turbine concept resistant to natural disasters and proliferation. Findings underscore the substantial changes and investments needed for this transition, identifying primary needs of 27 GW or 129 GW for self-sufficiency and exports, respectively. This foundational analysis marks the start of research, investment, and political agendas toward decarbonization.

Keywords: Decarbonisation strategies; Helium closed cycle gas turbine; Hydrogen production; National data analysis; Energy consumption; Green economy; Energy self-sufficiency
Clean Energy Sustain.
2024,
2
(2), 10005; 
Open Access

Article

23 January 2024

Analysis of a σ54 Transcription Factor L420P Mutation in Context of Increased Organic Nitrogen Tolerance of Photofermentative Hydrogen Production in Cereibacter sphaeroides Strain 2.4.1 Substrain H2

Photofermentative hydrogen production with non-sulfur purple bacteria like Cereibacter sphaeroides (formerly Rhodobacter sphaeroides) is a promising and sustainable process to convert organic waste into the energy carrier hydrogen gas. However, this conversion is inhibited by elevated organic nitrogen concentrations in the substrate, which limits its applicability to nitrogen-poor organic waste. We present genomic and transcriptomic insights into a substrain of Cereibacter sphaeroides strain 2.4.1 that shows unexpected high levels of photofermentative hydrogen evolution when fed with glutamate. Genome sequencing revealed 222 single nucleotide variances (SNVs) between the reference genome of C. sphaeroides strain 2.4.1 and the analyzed substrain H2. These affect 61 protein coding genes. A leucine-proline exchange is present in the σ54 factor (rpoN2 gene), a global hydrogen and nitrogen metabolism regulator. We propose a model how this mutation alters DNA-binding properties that explain the unexpected organic nitrogen tolerance of hydrogen production. Transcriptomic analyses under varying glutamate concentrations support this finding. Thus, we present the first thorough genomic and transcriptomic analysis of a Cereibacter strain that shows promising metabolic characteristics for biotechnological hydrogen gas production from organic waste. These results suggest a potential target for strain optimization. Possibly, our key finding can be transferred to other hydrogen producing microorganisms.

Keywords: Bioenergy; Photobiological hydrogen production; Re-sequencing; Transcriptomic analysis; RNASeq; σ54; RpoN; Sigma factor
Synth. Biol. Eng.
2024,
2
(1), 10001; 
Open Access

Article

05 January 2024

Benzene Bridged Carbon Nitride for Efficient Photocatalytic Hydrogen Evolution

Turing the electronic structure by inserting certain functional groups in graphitic carbon nitride (g-C3N4, CN for short) skeleton through molecular doping is an effective way to improve its photocatalytic performance. Herein, we prepare a benzene bridged carbon nitride (BCN) by calcining urea and 1,3,5-tribromobenzene at elevated temperature. The introduction of benzene ring in g-C3N4 layers improves the separation efficiency and lifetime of photogenerated carriers, inhibits the recombination rate of electron/hole pairs, thus the performance of photocatalytic hydrogen evolution improves. The optimal hydrogen evolution rate of 1.5BCN reaches 1800 µmol/h·g, which is nine times that of the pure g-C3N4. DFT calculation proved the benzene bridged CN increased the distance of charge transfer (DCT) and the push-pull electronic effect of intramolecular electrons. This work may provide a pathway for preparing molecular doped g-C3N4 with improved photocatalytic performance.

Keywords: Graphitic carbon nitride; Photocatalysis; Hydrogen evolution; Photocatalysts; Molecular design
Photocatal. Res. Potential
2024,
1
(2), 10001; 
Open Access

Article

19 September 2023

Advancing Green Hydrogen Production in Saudi Arabia: Harnessing Solar Energy and Seawater Electrolysis

The transition to clean and sustainable energy sources is crucial for combating the challenges posed by climate change. Green hydrogen, produced through renewable energy-driven electrolysis, holds significant promise as a viable clean energy carrier. The study introduces a system that leverages abundant solar energy and utilizes seawater as the feedstock for electrolysis, potentially offering a cost-effective solution. A comprehensive mathematical model, implemented in MATLAB, is employed to simulate the design and operational efficiency of the proposed green hydrogen production system. The system’s core components include solar panels as a clean energy source, an advanced MPPT charge controller ensuring optimal power delivery to the electrolyzer, and a seawater tank serving as the electrolyte source. The model combines these elements, allowing for continuous operation and efficient hydrogen production, addressing concerns about energy losses and cost-effectiveness. Results demonstrate the influence of solar irradiance on the system’s performance, revealing the need to account for seasonal variations when designing green hydrogen production facilities. Theoretical experiments are conducted to evaluate the behavior of a lithium battery, essential for stabilizing the system’s output and ensuring continuous operation during periods of low solar radiation. 

Keywords: Solar energy; PV; Green hydrogen; Seawater electrolysis
Open Access

Article

03 March 2023

SnS2 Quantum Dots Decorated MoS2 Nanosheets Enabling Efficient Photocatalytic H2 Evolution in CO2 Saturated Water

SnS2/MoS2 heterojunction nanocomposite was prepared by a one-step hydrothermal synthesis method. The nanocomposite exhibited much improved photocatalytic hydrogen evolution performance in CO2 saturated solution compared with pure MoS2 and SnS2 samples. The improved photocatalytic activity was attributed to the S-scheme heterojunction structure between SnS2 quantum dots and MoS2 nanosheets which facilitate electron-hole separation both in MoS2 and SnS2. In the S-scheme structure, the strong reduction ability of SnS2 quantum dots was well maintained for the improved H2 evolution. In situ DRIFT studies allowed us to suggest reaction pathways from CO2 and H2O to photocatalytic H2, CO, and CH4 generation.

Keywords: Photocatalysis; H2 evolution; CO2 hydrogenation; S-scheme
Photocatal. Res. Potential
2024,
1
(1), 10003; 
TOP