Article Open Access

Metal-Free Lewis Pair Catalysts for a One-Pot Terpolymerization of Propylene Oxide, ʟ-Lactide and CO2

Sustainable Polymer & Energy. 2023, 1(1), 10002; https://doi.org/10.35534/spe.2023.10002
Shuxian Ye 1,    Jiaxin Liang 1,    Yansong Ren 1,    Shuanjin Wang 1,    Dongmei Han 4,    Sheng Huang 1,    Zhiheng Huang 1,    Min Xiao 1, *    Yuezhong Meng 1, 2, 3, 4, *   
1
The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
2
Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450000, China
3
Research Center of Green Catalysts, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
4
School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
*
Authors to whom correspondence should be addressed.

Received: 27 Nov 2022    Accepted: 11 Jan 2023    Published: 30 Jan 2023   

Abstract

Multiblock and di-/tri-block copolymers are successfully synthesized for the first time via the metal-free terpolymerization of propylene oxide (PO), ʟ-lactide (LA) and CO2 in one-pot/one-step and one-pot/two-step protocols respectively. Firstly, triethyl borane (TEB) and bis(triphenylphosphine)iminium chloride (PPNCl) Lewis pair is employed in the ring-opening polymerization of LA, wherein the catalytic efficiency is significantly correlated to the TEB/PPNCl feed ratio. Next, a series of TEB/base pairs are selected to synthesize the PO/LA/CO2 terpolymer (PPCLA) in one-pot/one-step strategy. In PPCLA synthesis, LA exhibits the fastest reaction rate but the severe transesterification is almost unavoidable, resulting in low molecular weight products. In order to prepare high-molecular-weight terpolymers, a one-pot/two-step methodology has to be applied. By this method, the copolymerization of PO/CO2 proceeds first to form poly(propylene carbonate) (PPC) macroinitiators, which triggers the polymerization of LA to polylactide (PLA), leading to PLA-PPC or PLA-PPC-PLA block copolymers. The synthesized PLA-PPC-PLA block copolymers display an improved thermal stability compared with PPC.

Keywords

Metal-free Catalysis; CO2 Utilization; Biodegradable; Multiblock copolymer; Polylactide; Polycarbonate

References

1.
Zhang X, Fevre M, Jones GO, Waymouth RM. Catalysis as an enabling science for sustainable polymers. Chem. Rev. 2018, 118, 839–885. [Google Scholar]
2.
Tang S, Nozaki K. Advances in the synthesis of copolymers from carbon dioxide, dienes, and olefins. Acc. Chem. Res. 2022, 55, 1524–1532. [Google Scholar]
3.
Bhat GA, Darensbourg DJ. Progress in the catalytic reactions of CO2 and epoxides to selectively provide cyclic or polymeric carbonates. Green Chem. 2022, 24, 5007–5034. [Google Scholar]
4.
Wu J, Yu TL, Chen CT, Lin CC. Recent developments in main group metal complexes catalyzed/initiated polymerization of lactides and related cyclic esters. Coord. Chem. Rev. 2006, 250, 602–626. [Google Scholar]
5.
Xu Y, Lin L, Xiao M, Wang S, Smith AT, Sun L, et al. Synthesis and properties of CO2-based plastics: Environmentally-friendly, energy-saving and biomedical polymeric materials. Prog. Polym. Sci. 2018, 80, 163–182. [Google Scholar]
6.
Nampoothiri KM, Nair NR, John RP. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 2010, 101, 8493–8501. [Google Scholar]
7.
Rasal RM, Janorkar AV, Hirt DE. Poly(lactic acid) modifications. Prog. Polym. Sci. 2010, 35, 338–356. [Google Scholar]
8.
Hamad K, Kaseem M, Ayyoob M, Joo J, Deri F. Polylactic acid blends: The future of green, light and tough. Prog. Polym. Sci. 2018, 85, 83–127. [Google Scholar]
9.
Bednarek M. Branched aliphatic polyesters by ring-opening (co)polymerization. Prog. Polym. Sci. 2016, 58, 27–58. [Google Scholar]
10.
Luinstra G. Poly(propylene carbonate), old copolymers of propylene oxide and carbon dioxide with new interests: Catalysis and material properties. Polym. Rev. 2008, 48, 192–219. [Google Scholar]
11.
Liu SQ, Wang JL, Huang KL, Liu YF, Wu WK. Synthesis of poly(propylene-co-lactide carbonate) and hydrolysis of the terpolymer. Polym. Bull. 2011, 66, 327–340. [Google Scholar]
12.
Tang L, Luo W, Xiao M, Wang S, Meng Y. One-pot synthesis of terpolymers with long ʟ-lactide rich sequence derived from propylene oxide, CO2, and ʟ-lactide catalyzed by zinc adipate. J. Polym. Sci. A Polym. Chem. 2015, 53, 1734–1741. [Google Scholar]
13.
Song P, Xu H, Mao X, Liu X, Wang L. A one-step strategy for aliphatic poly(carbonate-ester)s with high performance derived from CO2, propylene oxide and ʟ-lactide. Polym. Adv. Technol. 2017, 28, 736–741. [Google Scholar]
14.
Xie D, Yang Z, Wu L, Zhang C, Chisholm MH. One-pot regioselective and stereoselective terpolymerization of rac-lactide, CO2 and rac-propylene oxide with TPPMCl (M = Cr, Co, Al)/PPNCl binary catalyst. Polym. Int. 2018, 67, 883–893. [Google Scholar]
15.
Li X, Hu C, Pang X, Duan R, Chen X. One-pot copolymerization of epoxides/carbon dioxide and lactide using a ternary catalyst system. Catal. Sci. Technol. 2018, 8, 6452–6457. [Google Scholar]
16.
Duan R, Hu C, Sun Z, Zhang H, Pang X, Chen X. Conjugated tri-nuclear salen-Co complexes for the copolymerization of epoxides/CO2: Cocatalyst-free catalysis. Green Chem. 2019, 21, 4723–4731. [Google Scholar]
17.
Wu GP, Darensbourg DJ, Lu XB. Tandem metal-coordination copolymerization and organocatalytic ring-opening polymerization via water to synthesize diblock copolymers of styrene oxide/CO2 and lactide. J. Am. Chem. Soc. 2012, 134, 17739–17745. [Google Scholar]
18.
Lohmeijer BGG, Pratt RC, Leibfarth F, Logan JW, Hedrick JL. Guanidine and amidine organocatalysts for ring-opening polymerization of cyclic esters. Macromolecules 2006, 39, 8574–8583. [Google Scholar]
19.
Darensbourg DJ, Wu G. A one-pot synthesis of a triblock copolymer from propylene oxide/carbon dioxide and lactide: Intermediacy of polyol initiators. Angew. Chem. Int. Ed. 2013, 52, 10602–10606. [Google Scholar]
20.
Wu GP, Darensbourg DJ. Mechanistic insights into water-mediated tandem catalysis of metal-coordination CO2/epoxide copolymerization and organocatalytic ring-opening polymerization: One-pot, two steps, and three catalysis cycles for triblock copolymers synthesis. Macromolecules 2016, 49, 807–814. [Google Scholar]
21.
Hu C, Duan R, Yang S, Pang X, Chen X. CO2 controlled catalysis: Switchable homopolymerization and copolymerization. Macromolecules 2018, 51, 4699–4704. [Google Scholar]
22.
Zhang D, Boopathi SK, Hadjichristidis N, Gnanou Y, Feng X. Metal-free alternating copolymerization of CO2 with epoxides: Fulfilling “green” synthesis and activity. J. Am. Chem. Soc. 2016, 138, 11117–111120. [Google Scholar]
23.
Wang Y, Zhang JY, Yang JL, Zhang HK, Kiriratnikom J, Zhang CJ, et al. Highly selective and productive synthesis of a carbon dioxide-based copolymer upon zwitterionic growth. Macromolecules 2021, 54, 2178–2186. [Google Scholar]
24.
Chen Z, Yang JL, Lu XY, Hu LF, Cao XH, Wu GP, et al. Triethyl borane-regulated selective production of polycarbonates and cyclic carbonates for the coupling reaction of CO2 with epoxides. Polym. Chem. 2019, 10, 3621–3628. [Google Scholar]
25.
Patil NG, Boopathi SK, Alagi P, Hadjichristidis N, Gnanou Y, Feng X. Carboxylate salts as ideal initiators for the metal-free copolymerization of CO2 with epoxides: Synthesis of well-defined polycarbonates diols and polyols. Macromolecules 2019, 52, 2431–2438. [Google Scholar]
26.
Papagiannopoulos A, Zhao J, Zhang G, Pispas S, Jafta CJ. Viscosity transitions driven by thermoresponsive self-assembly in PHOS-g-P(PO-r-EO) brush copolymer. Macromolecules 2018, 51, 1644–1653. [Google Scholar]
27.
Chen Y, Shen J, Liu S, Zhao J, Wang Y, Zhang G. High efficiency organic Lewis pair catalyst for ring-opening polymerization of epoxides with chemoselectivity. Macromolecules 2018, 51, 8286–8297. [Google Scholar]
28.
Zhang C, Duan H, Hu L, Zhang C, Zhang X. Metal-free route to precise synthesis of poly(propylene oxide) and its blocks with high activity. ChemSusChem 2018, 11, 4209–4213. [Google Scholar]
29.
Boopathi SK, Hadjichristidis N, Gnanou Y, Feng X. Direct access to poly(glycidyl azide) and its copolymers through anionic (co-)polymerization of glycidyl azide. Nat. Commun. 2019, 10, 293. [Google Scholar]
30.
Hu L, Zhang C, Wu H, Yang J, Liu B, Duan H, et al. Highly active organic Lewis pairs for the copolymerization of epoxides with cyclic anhydrides: Metal-free access to well-defined aliphatic polyesters. Macromolecules 2018, 51, 3126–3134. [Google Scholar]
31.
Zhu S, Wang Y, Ding W, Zhou X, Liao Y, Xie X. Lewis pair catalyzed highly selective polymerization for the one-step synthesis of AzCy(AB)xCyAz pentablock terpolymers. Polym. Chem. 2020, 11, 1691–1695. [Google Scholar]
32.
Kummari A, Pappuru S, Chakraborty D. Fully alternating and regioselective ring-opening copolymerization of phthalic anhydride with epoxides using highly active metal-free Lewis pairs as a catalyst. Polym. Chem. 2018, 9, 4052–4062. [Google Scholar]
33.
Zhang B, Li H, Luo H, Zhao J. Ring-opening alternating copolymerization of epichlorohydrin and cyclic anhydrides using single- and two-component metal-free catalysts. Eur. Polym. J. 2020, 134, 109820. [Google Scholar]
34.
Ji HY, Chen XL, Wang B, Pan L, Li YS. Metal-free, regioselective and stereoregular alternating copolymerization of monosubstituted epoxides and tricyclic anhydrides. Green Chem. 2018, 20, 3963–3973. [Google Scholar]
35.
Li H, He G, Chen Y, Zhao J, Zhang G. One-step approach to polyester–polyether block copolymers using highly tunable bicomponent catalyst. ACS Macro Lett. 2019, 8, 973–978. [Google Scholar]
36.
Ji HY, Song DP, Wang B, Pan L, Li YS. Organic Lewis pairs for selective copolymerization of epoxides with anhydrides to access sequence-controlled block copolymers. Green Chem. 2019, 21, 6123–6132. [Google Scholar]
37.
Liu S, Bai T, Ni K, Chen Y, Zhao J, Ling J, et al. Biased Lewis pair: A general catalytic approach to ether-ester block copolymers with unlimited sequences. Angew. Chem. Int. Ed. 2019, 58, 15478–15487. [Google Scholar]
38.
Varghese JK, Hadjichristidis N, Gnanou Y, Feng X. Degradable poly(ethylene oxide) through metal-free copolymerization of ethylene oxide with ʟ-lactide. Polym. Chem. 2019, 10, 3764–3771. [Google Scholar]
39.
Chidara VK, Boopathi SK, Hadjichristidis N, Gnanou Y, Feng X. Triethylborane-assisted synthesis of random and block poly(ester-carbonate)s through one-pot terpolymerization of epoxides, CO2, and cyclic anhydrides. Macromolecules 2021, 54, 2711–2719. [Google Scholar]
40.
Liang J, Ye S, Wang W, Fan C, Wang S, Han D, et al. Performance tailorable terpolymers synthesized from carbon dioxide, phthalic anhydride and propylene oxide using Lewis acid-base dual catalysts. J. CO2 Util. 2021, 49, 101558. [Google Scholar]
41.
Ye S, Wang W, Liang J, Wang S, Xiao M, Meng Y. Metal-free approach for a one-pot construction of biodegradable block copolymers from epoxides, phthalic anhydride, and CO2. ACS Sustain. Chem. Eng. 2020, 8, 17860–17867. [Google Scholar]
42.
Zhang J, Wang L, Liu S, Kang X, Li Z. A Lewis pair as organocatalyst for one-pot synthesis of block copolymers from a mixture of epoxide, anhydride, and CO2. Macromolecules 2021, 54, 763–772. [Google Scholar]
43.
Yang J, Wu H, Li Y, Zhang X, Darensbourg DJ. Perfectly alternating and regioselective copolymerization of carbonyl sulfide and epoxides by metal-free Lewis pairs. Angew. Chem. Int. Ed. 2017, 56, 5774–5779. [Google Scholar]
44.
Hošťálek Z, Trhlíková O, Walterová Z, Martinez T, Peruch F, Cramail H, et al. Alternating copolymerization of epoxides with anhydrides initiated by organic bases. Eur. Polym. J. 2017, 88, 433–447. [Google Scholar]
45.
Zhang D, Feng X, Gnanou Y, Huang K. Theoretical mechanistic investigation into metal-free alternating copolymerization of CO2 and epoxides: The key role of triethylborane. Macromolecules 2018, 51, 5600–5607. [Google Scholar]
Creative Commons

© 2023 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (http://creativecommons.org/licenses/by/4.0/).