Article Open Access

Synthesis and Characterization of Cyclic Carbonate End-Functional Linear and Star Polyesters via Ring-Opening Polymerization

Sustainable Polymer & Energy. 2023, 1(2), 10011; https://doi.org/10.35534/spe.2023.10011
1
School of Chemical Sciences, Solapur University, Solapur 413255, India
2
Polymer Research and Technology Department, Shilpa Pharma Life Sciences Ltd. (SPL), Raichur, Karnataka 584134, India
*
Authors to whom correspondence should be addressed.

Received: 10 Jun 2023    Accepted: 28 Aug 2023    Published: 08 Sep 2023   

Abstract

Well-defined α-(cyclic carbonate), ω-hydroxyl heterotelechelic poly (D,L-lactide)s (PDLLAs) were prepared with good end-group fidelity by ring-opening polymerization (ROP) of D,L-lactide catalyzed by organo catalyst namely, N,N′ dimethyl amino pyridine (DMAP) in conjunction with a renewable, functional bio-based initiator namely glycerol 1,2-carbonate (GC) in bulk at 135 °C with 82% yield. In the case of GC/DMAP catalyzed polymerizations, the HO-PDLLA-COOH series was not observed in MALDI TOF mass analysis unlike as obtained due to transesterification reactions when catalyzed by GC/Sn(Oct)2. Also, cyclic carbonate end-functional 4-arm star poly(ε-caprolactone) (PCL) was prepared via coupling of GC with (PCL-COOH)4 at room temperature in the presence of N,N′-dicyclohexylcarbodiimide (DCC) and DMAP. Quantitative conversion of hydroxyl functionality in (PCL-OH)4 to carboxylic acid and then to cyclic carbonate functionality was achieved with 90% yield for low molecular weight 4-arm star PCL confirmed by NMR, FT-IR, and MALDI TOF mass spectroscopy.

References

1.
Yamashita, Y. Chemistry and Industry of Macromonomers; Huthig: Heidelberg, Germany, 1993.
2.
Tasdelen MA, Kahveci MU, Yagci Y. Telechelic polymers by living and controlled/living polymerization methods.  Prog. Polym. Sci. 2011, 36, 455–567. [Google Scholar]
3.
Goethals EJ. Telechelic Polymers: Synthesis and Applications; CRC Press: Boca Raton, FL, USA, 1989.
4.
Labet M, Thielemans W. Synthesis of polycaprolactone: a review.  Chem. Soc. Rev. 2009, 38, 3484–3504. [Google Scholar]
5.
Dittrich W, Schulz RC. Kinetik und Mechanismus der ringöffnenden Polymerisation von L(-)-Lactid.  Angew. Makromol. Chem. 1971, 15, 109–126. [Google Scholar]
6.
Dubois P, Jacobs C, Jérôme R, Teyssié P. Macromolecular engineering of polylactones and polylactides. 4. Mechanism and kinetics of lactide homopolymerization by aluminum isopropoxide.  Macromolecules 1991, 24, 2266–2270. [Google Scholar]
7.
Kricheldorf HR, Berl M, Scharnagl N. Poly(lactones). 9. Polymerization mechanism of metal alkoxide initiated polymerizations of lactide and various lactones.  Macromolecules 1988, 21, 286–293. [Google Scholar]
8.
Eguiburu JL, Fernandez-Berridi MJ, Cossío FP, San Román J. Ring-Opening Polymerization of L-Lactide Initiated by (2-Methacryloxy) ethyloxy-Aluminum Trialkoxides. 1. Kinetics.  Macromolecules 1999, 32, 8252–8258. [Google Scholar]
9.
Kowalski A, Duda A, Penczek S.  Kinetics and Mechanism of Cyclic Esters Polymerization Initiated with Tin(II) Octoate. 3. Polymerization of L,L-Dilactide.  Macromolecules 2000, 33, 7359–7370. [Google Scholar]
10.
Marshall EL, Gibson VC, Rzepa HS. A Computational Analysis of the Ring-Opening Polymerization of rac-Lactide Initiated by Single-Site β-Diketiminate Metal Complexes:  Defining the Mechanistic Pathway and the Origin of Stereocontrol.  J. Am. Chem. Soc. 2005, 127, 6048–6051. [Google Scholar]
11.
Ryner M, Stridsberg K, Albertsson A-C, von Schenck H, Svensson M. Mechanism of Ring-Opening Polymerization of 1,5-Dioxepan-2-one and L-Lactide with Stannous 2-Ethylhexanoate. A Theoretical Study.  Macromolecules 2001, 34, 3877–3881. [Google Scholar]
12.
Stephen R, Sunoj RB, Ghosh P. A computational insight into a metal mediated pathway for the ring-opening polymerization (ROP) of lactides by an ionic {(NHC)2Ag}+X (X = halide) type N-heterocyclic carbene (NHC) complex.  Dalton Trans. 2011, 40, 10156–10161. [Google Scholar]
13.
Duda A, Penczek S. Thermodynamics of L-lactide polymerization. Equilibrium monomer concentration.  Macromolecules 1990, 23, 1636–1639. [Google Scholar]
14.
Kricheldorf HR, Kreiser-Saunders I. Polylactones, 19. Anionic polymerization of L-lactide in solution.  Makromol. Chem. 1990, 191, 1057–1066. [Google Scholar]
15.
Penczek S, Duda A, Szymanski R. Intra- and intermolecular chain transfer to macromolecules with chain scission. The case of cyclic esters.  Macromol. Symp. 1998, 132, 441–449. [Google Scholar]
16.
Liu J, Liu L. Ring-Opening Polymerization of ε-Caprolactone Initiated by Natural Amino Acids.  Macromolecules 2004, 37, 2674–2676. [Google Scholar]
17.
Persson PV, Schrolder J, Wickholm K, Hedenstrolm E, Iversen, T. Selective Organocatalytic Ring-Opening Polymerization:  A Versatile Route to Carbohydrate-Functionalized Poly(ε-caprolactones).  Macromolecules 2004, 37, 5889–5893. [Google Scholar]
18.
de França JOC, da Silva Valadares D, Paiva MF, Dias SCL, Dias JA. Polymers Based on PLA from Synthesis Using D, L-Lactic Acid (or Racemic Lactide) and Some Biomedical Applications: A Short Review.  Polymers 2022, 14, 2317. [Google Scholar]
19.
Jamie MM, Adam DS, Storey RF. Synthesis and characterization of A-B-A triblock copolymers derived from chloro-telechelic poly(L-lactide): combining ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP).  Polymer 2005, 46, 3628–3638. [Google Scholar]
20.
Wiggins JS, Mohammad KH, Kenneth AM, Storey RF. Hydrolytic degradation of poly(D,L-lactide) as a function of end group: Carboxylic acid vs. hydroxyl.  Polymer 2006, 47, 1960–1969. [Google Scholar]
21.
Hutchings LR, Narrainen AP, Eggleston SM, Clarke N, Thompson RL. Surface-active fluorocarbon end-functionalized polylactides.  Polymer 2006, 47, 8116–8122. [Google Scholar]
22.
Vuorinen S, Antikainen O, Lahcini M, Repo T, Yliruusi J, Heinamaki J. Sugar End-Capped Poly-D,L-lactides as Excipients in Oral Sustained Release Tablets.  AAPS Pharm. Sci. Tech. 2009, 10, 566–573. [Google Scholar]
23.
Cameron DJ, Shaver MP. Aliphatic polyester polymer stars: synthesis, properties and applications in biomedicine and nanotechnology. Chem. Soc Rev. 2011, 40, 1761–1776. [Google Scholar]
24.
Choi YK, Bae YH, Kim SW. Star-Shaped Poly(ether-ester) Block Copolymers:  Synthesis, Characterization, and Their Physical Properties.  Macromolecules 1998, 31, 8766–8774. [Google Scholar]
25.
Hadjichristidis N, Pitsikalis M, Iatrou H, Driva P, Sakellariou G, Chatzichristidi M. 6.03 - Polymers with Star-Related Structures: Synthesis, Properties, and Applications. In Polymer Science: A Comprehensive Reference; Elsevier: Amsterdam, The Netherlands, 2012; pp. 29–111.
26.
Grzegorz L. Star-shaped polymers having PEO arms.  Prog. Polym. Sci. 2009, 34, 852–892. [Google Scholar]
27.
Maglio G, Nese G, Nuzzo M, Palumbo R. Synthesis and Characterization of Star-Shaped Diblock Poly(ε-caprolactone)/Poly(ethylene oxide) Copolymers.  Macromol. Rapid Cummun. 2004, 25, 1139–1144. [Google Scholar]
28.
Bhayo AM, Abdul-Karim R, Musharraf SG, Malik MI. Synthesis and characterization of 4-arm star-shaped amphiphilic block copolymers consisting of poly(ethylene oxide) and poly(ε-caprolactone).  RSC Adv. 2018, 8, 28569–28580. [Google Scholar]
29.
Deng M, Chen X, Piao L, Zhang X, Dai Z, Jing X. Synthesis of four-armed poly(ε-caprolactone)-block-poly(ethylene oxide) by diethylzinc catalyst.  J. Polym. Sci. Part A Polym. Chem. 2004, 42, 950–959. [Google Scholar]
30.
Sisson AL, Ekinci D, Lendlein A. The contemporary role of ε-caprolactone chemistry to create advanced polymer architectures.  Polymer 2013, 54, 4333–4350. [Google Scholar]
31.
Ponjavic M, Nikolic MS, Stevanovic S, Nikodinovic-Runic J, Jeremic S, Pavic A, et al. Hydrolytic degradation of star-shaped poly(ε-caprolactone)s with different number of arms and their cytotoxic effects.  J. Bioactive Compat. Polym. 2020, 35, 517–537. [Google Scholar]
32.
Shariff SHA, Ismail MW. Preliminary study of 4-arms poly(caprolactone) star-shaped polymer: synthesis and characterization.  J. Acad. 2021, 9, 127–138. [Google Scholar]
33.
Bunk C, Löser L, Fribiczer N, Komber H, Jakisch L, Scholz R, et al. Amphiphilic Model Networks Based on PEG and PCL Tetra-arm Star Polymers with Complementary Reactivity.  Macromolecules 2022, 55, 6573–6589. [Google Scholar]
34.
Bunk C, Komber H, Lang M, Fribiczer N, Geisler M, Formanek P, et al. Amphiphilic tetra-PCL-b-PEG star block copolymers using benzoxazinone-based linking groups.  Polym. Chem. 2023, 14, 1965–1977. [Google Scholar]
35.
Zhu W, Ling J, Shen, Z. Synthesis and characterization of amphiphilic star-shaped polymers with calix[6]arene cores.  Macromol. Chem. Phys. 2006, 207, 844–849. [Google Scholar]
36.
Liu X, Jin X, Ma PX. Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair.  Nat. Mater. 2011, 10, 398–406. [Google Scholar]
37.
Drew CF, Florian W, Andre G, Müller AHE, Schmidt H-W, Ober CK. Comparison of star and linear ArF resists. In Proceedings of the SPIE Advanced Lithography 2010, San Jose, CA, USA, 27 February–4 March 2010.
38.
Dechy-Cabaret O, Martin-Vaca B, Bourissou D. Controlled Ring-Opening Polymerization of Lactide and Glycolide.  Chem. Rev. 2004, 104, 6147–6176. [Google Scholar]
39.
Chen Y, Li CY, Liu DC, Ko BT. Synthesis, characterization and reactivity of single-site aluminium amides bearing benzotriazole phenoxide ligands: catalysis for ring-opening polymerization of lactide and carbon dioxide/propylene oxide coupling.  Dalton Trans. 2013, 42, 11488–11496. [Google Scholar]
40.
Kohn FE, Van Ommen JG, Feuen J. The mechanism of the ring-opening polymerization of lactide and glycolide.  Eur. Polym. J. 1983, 19, 1081–1088. [Google Scholar]
41.
Mazarro R, Gracia I, Rodríguez JF, Storti G, Morbidelli, M. Kinetics of the ring-opening polymerization of D,L-lactide using zinc (II) octoate as catalyst. Polym. Int. 2011, 61, 265–273. [Google Scholar]
42.
Amgoune A, Thomas CM, Carpentier JF.  Controlled ring-opening polymerization of lactide by group 3 metal complexes.  Pure Appl. Chem. 2007, 79, 2013–2030. [Google Scholar]
43.
Gadomska-Gajadhur A, Ruśkowski P. Biocompatible Catalysts for Lactide Polymerization-Catalyst Activity, Racemization Effect, and Optimization of the Polymerization Based on Design of Experiments.  Org. Process Res. Dev. 2020, 24, 1435–1442. [Google Scholar]
44.
Routaray A, Nath N, Maharana T, Sahoo PK, Das JP, Sutar AK. Salicylaldimine Copper(II) complex catalyst: Pioneer for ring opening Polymerization of Lactide.  J. Chem. Sci. 2016, 128, 883–891. [Google Scholar]
45.
Katiyar V, Nanavati H. Ring-opening polymerization of L-lactide using N-heterocyclic molecules: mechanistic, kinetics and DFT studies.  Polym. Chem. 2010, 1, 1491–1500. [Google Scholar]
46.
Dahlman J, Rafler, G. Biodegradable polymers. 6th comm. Polymerization of ϵ-caprolactone.  Acta Polym. 1992, 43, 91–95. [Google Scholar]
47.
Kricheldorf HR, Lee SR, Bush, S. Polylactones 36. Macrocyclic Polymerization of Lactides with Cyclic Bu2Sn Initiators Derived from 1,2-Ethanediol, 2-Mercaptoethanol, and 1,2-Dimercaptoethane.  Macromolecules 1996, 29, 1375–1381. [Google Scholar]
48.
In’t Veld PJA, Velner P, van de Witte P, Hamhuis J, Dijkstra PJ, Feijen, J. Melt block copolymerization of ϵ-caprolactone and L-lactide.  J. Polym. Sci. Part A Polym. Chem. 1997, 35, 219–226. [Google Scholar]
49.
Penczek S, Duda, A. Selectivity as a measure of “livingness” of the polymerization of cyclic esters.  Macromol. Symp. 1996, 107, 1–15. [Google Scholar]
50.
Tao B, Lo MC, Fu GC. Planar-Chiral Pyridine N-Oxides, a New Family of Asymmetric Catalysts:  Exploiting an η5-C5Ar5 Ligand to Achieve High Enantioselectivity.  J. Am. Chem. Soc. 2001, 123, 353–354. [Google Scholar]
51.
Groger H, Wilken, J. Die Anwendung von L-Prolin als Enzymmimetikum und weitere neue asymmetrische Synthesen mit kleinen organischen Molekülen als chiralen Katalysatoren.  Angew. Chem. 2001, 113, 545–548. [Google Scholar]
52.
Dong VM, MacMillan DWC. Design of a New Cascade Reaction for the Construction of Complex Acyclic Architecture:  The Tandem Acyl-Claisen Rearrangement.  J. Am. Chem. Soc. 2001, 123, 2448–2449. [Google Scholar]
53.
Kamber NE, Wonhee J, Waymouth RM, Pratt RC, Lohmeijer BGG, Hedrick JL. Organocatalytic Ring-Opening Polymerization. Chem. Rev. 2007, 107, 5813–5840. [Google Scholar]
54.
Lohmeijer BGG, Pratt RC, Leibfarth F, Logan JW, Long DA, Dove AP, et al. Guanidine and Amidine Organocatalysts for Ring-Opening Polymerization of Cyclic Esters.  Macromolecules 2006, 39, 8574–8583. [Google Scholar]
55.
Zhang L, Pratt RC, Nederberg F, Horn WH, Julia ER, Wade C, et al. Acyclic Guanidines as Organic Catalysts for Living Polymerization of Lactide.  Macromolecules 2010, 43, 1660–1664. [Google Scholar]
56.
Nederberg F, Connor EF, Möller M, Glauser T, Hedrick JL. New Paradigms for Organic Catalysts: The First Organocatalytic Living Polymerization.  Angew. Chem. Int. Ed. 2001, 40, 2712–2715. [Google Scholar]
57.
Leroux F, Montembault V, Pascual S, Guerin W, Guillaume SM, Fontaine L. Synthesis and polymerization of cyclobutenyl-functionalized polylactide and polycaprolactone: a consecutive ROP/ROMP route towards poly(1,4-butadiene)-g-polyesters.  Polym. Chem. 2014, 5, 3476–3486. [Google Scholar]
58.
Coulembier O, Dubois P. 4-dimethylaminopyridine-based organoactivation: From simple esterification to lactide ring-opening “Living” polymerization.  J. Polym. Sci. Part A Polym. Chem. 2012, 50, 1672–1680. [Google Scholar]
59.
Newman MR, Russell SG, Benoit DSW. Controlled organocatalyzed D,L-lactide ring-opening polymerizations: synthesis of low molecular weight oligomers.  RSC Adv. 2018, 8, 28891–28894. [Google Scholar]
60.
Basterretxea A, Gabirondo E, Jehanno C, Zhu H, Coulembier O, Mecerreyes D, et al. Stereoretention in the Bulk ROP of L-Lactide Guided by a Thermally Stable Organocatalyst.  Macromolecules 2021, 54, 6214–6225. [Google Scholar]
61.
Orhan B, Tschan MJ-L, Wirotius A-L, Dove AP, Coulembier O, Taton D. Isoselective Ring-Opening Polymerization of rac-Lactide from Chiral Takemoto’s Organocatalysts: Elucidation of Stereocontrol.  ACS Macro Lett. 2018, 7, 1413–1419. [Google Scholar]
62.
Jiang X, Zhao N, Li Z. Stereoselective Ring-Opening Polymerization of rac-Lactide Catalyzed by Squaramide Derived Organocatalysts at Room Temperature.  Chin. J. Chem. 2021, 39, 2403–2409. [Google Scholar]
63.
Liu Y, Zhang J, Kou X, Liu S, Li Z. Highly Active Organocatalysts for Stereoselective Ring-Opening Polymerization of Racemic Lactide at Room Temperature.  ACS Macro Lett. 2022, 11, 1183–1189. [Google Scholar]
64.
Alba A, du Boullay OT, Martin-Vaca B, Bourissou D. Direct ring-opening of lactide with amines: application to the organo-catalyzed preparation of amide end-capped PLA and to the removal of residual lactide from PLA samples.  Polym. Chem. 2015, 6, 989–997. [Google Scholar]
65.
Couvert D, Brosse JC, Chevalier S, Senet JP. Monomères acryliques à fonction carbonate cyclique, 2 Modification chimique de copolymères à groupements carbonate cyclique lateraux.  Makromol. Chem. 1990, 191, 1311–1319. [Google Scholar]
66.
Golden JH, Chew BGM, Zax DB, DiSalvo FJ, Frechet JMJ, Tarascon JM. Preparation of Propylene Carbonate Acrylate and Poly(propylene carbonate acrylate) Electrolyte Elastomer Gels. 13C NMR Evidence for Li+-Cyclic Carbonate Interaction.  Macromolecules 1995, 28, 3468–3470. [Google Scholar]
67.
Dias FB, Plomp L, Veldhuis JBJ. Trends in polymer electrolytes for secondary lithium batteries.  J. Power Sources 2000, 88, 169–191. [Google Scholar]
68.
Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries.  Nature 2001, 414, 359–367. [Google Scholar]
69.
Britz J, Meyer WH, Wegner G. Blends of Poly(meth)acrylates with 2-Oxo-(1,3) dioxolane Side Chains and Lithium Salts as Lithium Ion Conductors.  Macromolecules 2007, 40, 7558–7565. [Google Scholar]
70.
Webster DC. Cyclic carbonate functional polymers and their applications.  Prog. Org. Coat. 2003, 47, 77–86. [Google Scholar]
71.
Helou M, Carpentier JF, Guillaume SM. Poly(carbonate-urethane): an isocyanate-free procedure from α, ω-di (cyclic carbonate) telechelic poly(trimethylene carbonate)s.  Green Chem. 2011, 13, 266–271. [Google Scholar]
72.
Chloe G, Vincent L, Francoise N, Jean-Marie D, Jean-Jacques R. Synthesis of polyoxazolines using glycerol carbonate derivative and end chains functionalization via carbonate and isocyanate routes.  J. Polym. Sci. Part A Polym. Chem. 2010, 48, 4027–4035. [Google Scholar]
73.
Palaskar DV, Sane PS, Wadgaonkar PP. A new ATRP initiator for synthesis of cyclic carbonate-terminated poly(methyl methacrylate).  React. Funct. Polym. 2010, 70, 931–937. [Google Scholar]
74.
Patil RM, Hong H, Chai CLL, Satyanarayana G, Gnaneshwar R. Synthesis of α-(cyclic carbonate), ω-hydroxyl-telechelic poly(ε-caprolactone).  Polym. Prepr. 2012, 53, 165–166. [Google Scholar]
75.
Patil RM, Hong H, Chai CLL, Anil AG, Satyanarayana G, Gnaneshwar R. Synthesis and characterization of α-(cyclic carbonate), ω-hydroxyl/itaconic acid asymmetric telechelic poly(ε-caprolactone).  Polym. Bull. 2015, 72, 2489–2501. [Google Scholar]
76.
Lang M, Chu CC. Functionalized multiarm poly(ϵ-caprolactone)s: Synthesis, structure analysis, and network formation.  J. Appl. Polym. Sci. 2002, 86, 2296–2306. [Google Scholar]
77.
Turunen MPK, Korhonen H, Tuominen J, Sepalla JV. Synthesis, characterization and crosslinking of functional star-shaped poly(ε-caprolactone). Polym. Int. 2002, 51, 92–100. [Google Scholar]
78.
Hakala RA, Korhonen H, Seppala JV. Hydrophobicities of poly(ε-caprolactone) oligomers functionalized with different succinic anhydrides. Eur. Polym. J. 2009, 45, 557–564. [Google Scholar]
79.
Korhonen H, Helminen A, Seppala JV. Synthesis of polylactides in the presence of co-initiators with different numbers of hydroxyl groups.  Polymer 2001, 42, 7541–7549. [Google Scholar]
80.
Li Y, Kissel T. Synthesis, characteristics and in vitro degradation of star-block copolymers consisting of L-lactide, glycolide and branched multi-arm poly(ethylene oxide).  Polymer 1998, 39, 4421–4427. [Google Scholar]
Creative Commons

© 2024 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (https://creativecommons.org/licenses/by/4.0/).