Article Open Access

Anion Exchange Membrane Reinforced with Polyethylene Substrate for Alkaline Fuel Cell Applications

Sustainable Polymer & Energy. 2023, 1(3), 10012; https://doi.org/10.35534/spe.2023.10012
1
Clean Energy Research Center, University of Yamanashi, Kofu 400-8510, Japan
2
Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
3
Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu 400-8510, Japan
4
Fuel Cell Nanomaterials Center, University of Yamanashi, Kofu 400-0021, Japan
5
Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
*
Authors to whom correspondence should be addressed.

Received: 07 Aug 2023    Accepted: 18 Sep 2023    Published: 25 Sep 2023   

Abstract

To enhance mechanical robustness of our in-house anion exchange membrane (QPAF-4), the reinforcement technique was applied using ozone-treated, porous polyethylene (PE) thin film (Toray SETELA) as a substrate. Homogenous and flexible reinforced membranes (QPAF-4-PE, 15–20 µm thick) were obtained by bar-coating method. The cross-sectional SEM image and EDS analysis revealed triple-layered (sandwich-like) structure without detectable pinholes. The QPAF-4-PE with ion exchange capacity (IEC) of 1.48 meq·g−1 exhibited lower water uptake (15 wt% at 90% relative humidity) and slightly lower hydroxide ion conductivity (71 mS·cm−1 at 80 ℃) than those of the pristine QPAF-4 (IEC = 1.84 meq·g−1, 25 wt% water uptake and 82 mS·cm−1 of the conductivity). The reinforced QPAF-4-PE exhibited slightly higher viscoelasticity (particularly, in MD direction) due to the suppressed water absorbability. Furthermore, the elongation at break increased by 9.8% in TD direction and 6.3% in MD direction. An H2/O2 fuel cell using QPAF-4-PE as membrane was investigated at different back-pressure, in which the cell with 100 kPa back-pressure onto the cathode side only achieved the maximum performance (176 mW·cm−2 at current density of 364 mA·cm−2) and the longest durability for (>200 h) at a constant current density of 100 mA·cm−2 maintaining 0.43 V of the cell voltage (67% remaining). The durability was eight times longer than that with ambient pressure and two times longer than that with back-pressure on both sides.

References

1.
Mandal M. Recent advancement on anion exchange membranes for fuel cell and water electrolysis.  Chemelectrochem 2020, 8, 36–45. [Google Scholar]
2.
Feng Z, Gupta G, Mamlouk M. A review of anion exchange membranes prepared via Friedel-Crafts reaction for fuel cell and water electrolysis.  Int. J. Hydrog. Energy 2023, 48, 25830–25858. [Google Scholar]
3.
Proch S, Stenström M, Eriksson L, Andersson J, Sjöblom G, Jansson A, et al. Coated stainless steel as bipolar plate material for anion exchange membrane fuel cells (AEMFCs). Int. J. Hydrog. Energy 2020, 45, 1313–1324. [Google Scholar]
4.
Hren M, Božič M, Fakin D, Kleinschek KS, Gorgieva S. Alkaline membrane fuel cells: Anion exchange membranes and fuels.  Sustain. Energy Fuels 2021, 5, 604–637. [Google Scholar]
5.
Chen N, Lee YM. Anion exchange polyelectrolytes for membranes and ionomers.  Prog. Polym. Sci. 2021, 113, 101345. [Google Scholar]
6.
Park EJ, Kim YS. Quaternized aryl ether-free polyaromatics for alkaline membrane fuel cells: synthesis, properties, and performance—A topical review.  J. Mater. Chem. A 2018, 6, 15456–15477. [Google Scholar]
7.
Mahmoud AMA, Miyatake K. Highly conductive and alkaline stable partially fluorinated anion exchange membranes for alkaline fuel cells: Effect of ammonium head groups.  J. Membr. Sci. 2022, 643, 120072. [Google Scholar]
8.
Chen N, Long C, Li Y, Lu C, Zhu H. Ultrastable and High Ion-Conducting Polyelectrolyte Based on Six-Membered N-Spirocyclic Ammonium for Hydroxide Exchange Membrane Fuel Cell Applications. ACS Appl. Mater. Interfaces 2018, 10, 15720–15732. [Google Scholar]
9.
Park HJ, Chu XM, Kim SP, Choi D, Jung JW, Woo J, et al. Effect of N-cyclic cationic groups in poly(phenylene oxide)-based catalyst ionomer membranes for anion exchange membrane fuel cells.  J. Membr. Sci. 2020, 608, 118183. [Google Scholar]
10.
Chen N, Jin Y, Liu H, Hu C, Wu B, Xu S, et al.  Insight into the alkaline stability of N-heterocyclic ammonium groups for anion-exchange polyelectrolytes.  Angew. Chem. Int. Ed. Engl. 2021, 60, 19272–19280. [Google Scholar]
11.
Mahmoud AMA, Miyatake K. Highly Conductive and Ultra Alkaline Stable Anion Exchange Membranes by Superacid-Promoted Polycondensation for Fuel Cells.  ACS Appl. Polym. Mater. 2023, 5, 2243–2253. [Google Scholar]
12.
Fan J, Willdorf-Cohen S, Schibli EM, Paula Z, Li W, Skalski TJG, et al. Poly(bis-arylimidazoliums) possessing high hydroxide ion exchange capacity and high alkaline stability.  Nat. Commun. 2019, 10, 2306. [Google Scholar]
13.
Xue B, Cui W, Zhou S, Zhang Q, Zheng J, Li S, et al. Facile Preparation of Highly Alkaline Stable Poly(arylene–imidazolium) Anion Exchange Membranes through an Ionized Monomer Strategy.  Macromolecules 2021, 54, 2202–2212. [Google Scholar]
14.
Hibbs MR. Alkaline stability of poly(phenylene)-based anion exchange membranes with various cations.  J. Polym. Sci. Part B: Polym. Phys. 2013, 51, 1736–1742. [Google Scholar]
15.
Pham TH, Olsson JS, Jannasch P. Effects of the N-alicyclic cation and backbone structures on the performance of poly(terphenyl)-based hydroxide exchange membranes.  J. Mater. Chem. A 2019, 7, 15895–15906. [Google Scholar]
16.
Lee WH, Mohanty AD, Bae C. Fluorene-based hydroxide ion conducting polymers for chemically stable anion exchange membrane fuel cells.  ACS Macro. Lett. 2015, 4, 453–457. [Google Scholar]
17.
Huang G, Mandal M, Peng X, Yang-Neyerlin AC, Pivovar BS, Mustain WE, et al. Composite Poly(norbornene) Anion Conducting Membranes for Achieving Durability, Water Management and High Power (3.4 W/cm2) in Hydrogen/Oxygen Alkaline Fuel Cells.  J. Electrochem. Soc. 2019, 166, F637. [Google Scholar]
18.
Chen N, Long C, Li Y, Lu C, Zhu H. Ultrastable and High Ion-Conducting Polyelectrolyte Based on Six-Membered N-Spirocyclic Ammonium for Hydroxide Exchange Membrane Fuel Cell Applications.  ACS Appl. Mater. Interfaces 2018, 10, 15720–15732. [Google Scholar]
19.
Dang H-S, Jannasch P. Exploring Different Cationic Alkyl Side Chain Designs for Enhanced Alkaline Stability and Hydroxide Ion Conductivity of Anion-Exchange Membranes.  Macromolecules 2015, 48, 5742–5751. [Google Scholar]
20.
Mandal M, Huang G, Kohl P. A. Anionic multiblock copolymer membrane based on vinyl addition polymerization of norbornenes: Applications in anion-exchange membrane fuel cells.  J. Membr. Sci. 2019, 570, 394–402. [Google Scholar]
21.
Wang HH, Hu C, Park JH, Kim HM, Kang NY, Bae JY, et al. Reinforced poly(fluorenyl-co-terphenyl piperidinium) anion exchange membranes for fuel cells.  J. Membr. Sci. 2022, 644, 120160. [Google Scholar]
22.
Hu C, Park JH, Kim HM, Wang HH, Bae JY, Liu ML, et al. Robust and durable poly(aryl-co-aryl piperidinium) reinforced membranes for alkaline membrane fuel cells.  J. Mater. Chem. A 2022, 10, 6587–6595. [Google Scholar]
23.
Mahmoud AMA, Miyatake K. Tuning the Hydrophobic Component in Reinforced Poly(arylimidazolium)-Based Anion Exchange Membranes for Alkaline Fuel Cells.  ACS Appl. Energy Mater. 2022, 5, 15211–15221. [Google Scholar]
24.
Yamaguchi T, Nakao S, Kimura S. Plasma-graft filling polymerization: preparation of a new type of pervaporation membrane for organic liquid mixtures.  Macromolecules 1991, 24, 5522–5527. [Google Scholar]
25.
Ono H, Kimura T, Takano A, Asazawa K, Miyake J, Inukai J, et al. Robust anion conductive polymers containing perfluoroalkylene and pendant ammonium groups for high performance fuel cells. J. Mater. Chem. A 2017, 5, 24804–24812. [Google Scholar]
26.
Miyake J, Taki R, Mochizuki T, Shimizu R, Akiyama R, Uchida M, Miyatake K. Design of flexible polyphenylene proton-conducting membrane for next-generation fuel cells.  Sci. Adv. 2017, 3, eaao0476. [Google Scholar]
27.
Mahmoud AMA, Miyatake K.  Highly conductive and alkaline stable partially fluorinated anion exchange membranes for alkaline fuel cells: effect of ammonium head groups.  J. Membr. Sci. 2022, 643, 120072. [Google Scholar]
28.
Ikawa M, Yamada T, Matsui H, Minemawari H, Tsutsumi J, Horii Y, et al. Simple push coating of polymer thin-film transistors.  Nat. Commun. 2012, 3, 1176. [Google Scholar]
29.
Otsuji K, Yokota N, Tryk DA, Kakinuma K, Miyatake K, Uchida M. Performance hysteresis phenomena of anion exchange membrane fuel cells using an Fe–N–C cathode catalyst and an in-house-developed polymer electrolyte.  J. Power Sources 2021, 487, 229407. [Google Scholar]
Creative Commons

© 2024 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (https://creativecommons.org/licenses/by/4.0/).