Review Open Access

Green Composites Using Naturally Occurring Fibers: A Comprehensive Review

Sustainable Polymer & Energy. 2023, 1(2), 10010; https://doi.org/10.35534/spe.2023.10010
School of Material Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
*
Authors to whom correspondence should be addressed.

Received: 01 Jun 2023    Accepted: 09 Aug 2023    Published: 15 Aug 2023   

Abstract

Depletion of non-renewable resources and health hazards of petroleum-based polymers and plastics has enforced the development of eco-friendly materials. The use of conventional plastics has to be minimized and can be replaced with environmentally friendly and sustainable bio-based polymers or biopolymers due to extensive environmental impact. A major share of petroleum-based polymers is used for polymeric composites with research focus on green composites and biocomposites containing renewable/bioderived matrix polymer and fillers from naturally occurring fibers. Biocomposites hold great promise to replace petroleum-based polymer composites owing to their lower cost, non-toxicity, abundance of raw material, renewability, and high specific strength. All these merits of biocomposites have led to an increment in the development of new biocomposites with enhanced properties, wide applicability and ever demanding criteria. The recently published review studies detailed the raw materials used, fabrication techniques, characterization, and applications including biodegradation and rheological studies performed in recent years. This review covers all the important properties of biocomposites along with detailed description of synthesis, properties, characterizations and applicability of these green composites in several areas. The review also focuses on their raw materials, types, recent biocomposites, processing techniques, characterizations, applications, and current challenges with future aspects.

References

1.
Naghdi R. Advanced Natural Fibre-Based Fully Biodegradable and Renewable Composites and Nanocomposites: A Comprehensive Review.  Int. Wood Prod. J. 2021, 12, 178–193. [Google Scholar]
2.
Suran M. A Planet Too Rich in Fibre.  EMBO Rep. 2018, 19, e46701. [Google Scholar]
3.
Walker TR, Fequet L. Current Trends of Unsustainable Plastic Production and Micro(Nano)Plastic Pollution.  TrAC Trends Anal. Chem. 2023, 160, 116984. [Google Scholar]
4.
La Mantia FP, Morreale M. Green Composites: A Brief Review.  Compos. Part A Appl. Sci. Manuf. 2011, 42, 579–588. [Google Scholar]
5.
Nanda S, Patra BR, Patel R, Bakos J, Dalai AK. Innovations in Applications and Prospects of Bioplastics and Biopolymers: A Review.  Environ. Chem. Lett. 2022, 20, 379–395. [Google Scholar]
6.
Baillie C. Why Green Composites? In Green Composites: Polymer Composites and the Environment; CRC Press: Boca Raton, FL, USA, 2004.
7.
Thakur VK, Thakur MK, Raghavan P, Kessler MR. Progress in Green Polymer Composites from Lignin for Multifunctional Applications: A Review.  ACS Sustain. Chem. Eng. 2014, 2, 1072–1092. [Google Scholar]
8.
Mohanty AK, Misra M, Drzal LT. Natural Fibers, Biopolymers, and Biocomposites; CRC Press: Boca Raton, FL, USA, 2005.
9.
Kulhan T, Kamboj A, Gupta NK, Somani N. Fabrication Methods of Glass Fibre Composites—A Review.  Funct. Compos. Struct. 2022, 4, 22001. [Google Scholar]
10.
Satyanarayana KG, Arizaga GGC, Wypych F. Biodegradable Composites Based on Lignocellulosic Fibers-An Overview.  Prog. Polym. Sci. 2009, 34, 982–1021. [Google Scholar]
11.
Daculsi G. History of Development and Use of the Bioceramics and Biocomposites. In Handbook of Bioceramics and Biocomposites; Springer: Cham, Switzerland, 2016; pp. 1–20.
12.
Partanen A, Carus M. Biocomposites, Find the Real Alternative to Plastic – An Examination of Biocomposites in the Market. Reinf. Plast. 2021, 63, 317–321. [Google Scholar]
13.
Gurunathan T, Mohanty S, Nayak SK. A Review of the Recent Developments in Biocomposites Based on Natural Fibres and Their Application Perspectives.  Compos. Part A Appl. Sci. Manuf. 2015, 77, 1–25. [Google Scholar]
14.
Karimah A, Ridho MR, Munawar SS, Adi DS, Ismadi; Damayanti R, et al. A Review on Natural Fibers for Development of Eco-Friendly Bio-Composite: Characteristics, and Utilizations.  J. Mater. Res. Technol. 2021, 13, 2442–2458. [Google Scholar]
15.
Thakur VK, Singha AS, Thakur MK. Biopolymers Based Green Composites: Mechanical, Thermal and Physico-Chemical Characterization.  J. Polym. Environ. 2012, 20, 412–421. [Google Scholar]
16.
Huang Z-M. Biocomposites. In Comprehensive Structural Integrity, 2nd ed.; Elsevier: Oxford, UK, 2023.
17.
Müssig J. Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2010.
18.
Faruk O, Bledzki AK, Fink HP, Sain M. Biocomposites Reinforced with Natural Fibers: 2000–2010.  Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar]
19.
Sarikaya E, Çallioğlu H, Demirel H. Production of Epoxy Composites Reinforced by Different Natural Fibers and Their Mechanical Properties.  Compos. Part B Eng. 2019, 167, 461–466. [Google Scholar]
20.
Noor Azammi AM, Ilyas RA, Sapuan SM, Ibrahim R, Atikah MSN, Asrofi M, et al. Characterization Studies of Biopolymeric Matrix and Cellulose Fibres Based Composites Related to Functionalized Fibre-Matrix Interface. In Interfaces in Particle and Fibre Reinforced Composites: Current Perspectives on Polymer, Ceramic, Metal and Extracellular Matrices; Woodhead Publishing: Sawston, UK, 2019.
21.
Getme AS, Patel B. A Review: Bio-Fiber’s as Reinforcement in Composites of Polylactic Acid (PLA).  Mater. Today Proc. 2019, 26, 2116–2122. [Google Scholar]
22.
Vinod A, Sanjay MR, Suchart S, Jyotishkumar P. Renewable and Sustainable Biobased Materials: An Assessment on Biofibers, Biofilms, Biopolymers and Biocomposites.  J. Clean. Prod. 2020, 258, 120978. [Google Scholar]
23.
Bari E, Morrell JJ, Sistani A. Durability of Natural/Synthetic/Biomass Fiber-Based Polymeric Composites: Laboratory and Field Tests. In Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Woodhead: Sawston, UK, 2018.
24.
Jawaid M, Abdul Khalil HPS. Cellulosic/Synthetic Fibre Reinforced Polymer Hybrid Composites: A Review.  Carbohydr. Polym. 2011, 86, 1–18. [Google Scholar]
25.
Kumar S, Manna A, Dang R. A Review on Applications of Natural Fiber-Reinforced Composites (NFRCs).  Mater. Today Proc. 2021, 50, 1632–1636. [Google Scholar]
26.
Monteiro SN, Lopes FPD, Ferreira AS, Nascimento DCO. Natural-Fiber Polymer-Matrix Composites: Cheaper, Tougher, and Environmentally Friendly.  JOM 2009, 61, 17–22. [Google Scholar]
27.
Madhusudhana HK, Ruhi K, Anand RL, Venkatesha CS. Experimental Study on Fracture Toughness of Natural Fibres Reinforced Hybrid Composites.  IOP Conf. Ser. Mater. Sci. Eng. 2018, 376, 12088. [Google Scholar]
28.
Namvar F, Jawaid M, Tahir PM, Mohamad R, Azizi S, Khodavandi A, et al. Potential Use of Plant Fibres and Their Composites for Biomedical Applications.  BioResources 2014, 9, 5688–5706. [Google Scholar]
29.
Komuraiah A, Kumar NS, Prasad BD. Chemical Composition of Natural Fibers and Its Influence on Their Mechanical Properties.  Mech. Compos. Mater. 2014, 50, 359–376. [Google Scholar]
30.
Khan MZR, Srivastava SK, Gupta MK. Tensile and Flexural Properties of Natural Fiber Reinforced Polymer Composites: A Review.  J. Reinf. Plast. Compos. 2018, 37, 1435–1455. [Google Scholar]
31.
Johnson R. Hemp as an Agricultural Commodity; Congressional Research Service: Washington, DC, USA, 2017.
32.
Radoor S, Jayakumar A, Siengchin S, Karayil J, Shivanna JM, Parameswaranpillai J. Cotton Fibers, Their Composites and Applications. In Plant Fibers, Their Composites, and Applications; Woodhead Publishing: Sawston, UK, 2022.
33.
Xu LL, Guo MX, Liu S, Bian SW. Graphene/Cotton Composite Fabrics as Flexible Electrode Materials for Electrochemical Capacitors.  RSC Adv. 2015, 5, 25244–25249. [Google Scholar]
34.
Ku H, Wang H, Pattarachaiyakoop N, Trada M. A Review on the Tensile Properties of Natural Fiber Reinforced Polymer Composites.  Compos. Part B Eng. 2011, 42, 856–873. [Google Scholar]
35.
West African Kenaf (Hibiscus Cannabinus L.) Natural Fiber Composite for Application in Automotive Industry. Available online: https://www.researchgate.net/publication/329979918_West_African_kenaf_Hibiscus_Cannabinus_L_natural_fiber_composite_for_application_in_automotive_industry (accessed on 17 July 2023).
36.
Holbery J, Houston D. Natural-Fiber-Reinforced Polymer Composites in Automotive Applications.  JOM 2006, 58, 80–86. [Google Scholar]
37.
Indran S, Edwin Raj R, Sreenivasan VS. Characterization of New Natural Cellulosic Fiber from Cissus quadrangularis Root.  Carbohydr. Polym. 2014, 110, 423–429. [Google Scholar]
38.
Wang H, Memon H, Hassan EAM, Miah MS, Ali MA. Effect of Jute Fiber Modification on Mechanical Properties of Jute Fiber Composite.  Materials 2019, 12, 1226. [Google Scholar]
39.
Dixit S, Goel R, Dubey A, Shivhare PR, Bhalavi T. Natural Fibre Reinforced Polymer Composite Materials - A Review.  Polym. Renew. Resour. 2017, 8, 71–78. [Google Scholar]
40.
Chin SC, Tee KF, Tong FS, Ong HR, Gimbun J. Thermal and Mechanical Properties of Bamboo Fiber Reinforced Composites.  Mater. Today Commun. 2020, 23, 100876. [Google Scholar]
41.
Gao X, Zhu D, Fan S, Rahman MZ, Guo S, Chen F. Structural and Mechanical Properties of Bamboo Fiber Bundle and Fiber/Bundle Reinforced Composites: A Review.  J. Mater. Res. Technol. 2022, 19, 1162–1190. [Google Scholar]
42.
Oushabi A. The Pull-out Behavior of Chemically Treated Lignocellulosic Fibers/Polymeric Matrix Interface (LF/PM): A Review.  Compos. Part B Eng. 2019, 174, 107059. [Google Scholar]
43.
Živković I, Fragassa C, Pavlović A, Brugo T. Influence of Moisture Absorption on the Impact Properties of Flax, Basalt and Hybrid Flax/Basalt Fiber Reinforced Green Composites.  Compos. Part B Eng. 2017, 111, 148–164. [Google Scholar]
44.
Wambua P, Ivens J, Verpoest I. Natural Fibres: Can They Replace Glass in Fibre Reinforced Plastics?  Compos. Sci. Technol. 2003, 63, 1259–1264. [Google Scholar]
45.
Hamidon MH, Sultan MTH, Ariffin AH, Shah AUM. Effects of Fibre Treatment on Mechanical Properties of Kenaf Fibre Reinforced Composites: A Review. J. Mater. Res. Technol. 2019, 8, 3327–3337. [Google Scholar]
46.
Venkateshwaran N, Elaya Perumal A. Mechanical and Water Absorption Properties of Woven Jute/Banana Hybrid Composites.  Fibers Polym. 2012, 13, 907–914. [Google Scholar]
47.
Sengupta S, Debnath S. Development of Sunnhemp (Crotalaria Juncea) Fibre Based Unconventional Fabric.  Ind. Crops Prod. 2018, 116, 109–115. [Google Scholar]
48.
Latif R, Wakeel S, Khan NZ, Noor Siddiquee A, Lal Verma S, Akhtar Khan Z. Surface Treatments of Plant Fibers and Their Effects on Mechanical Properties of Fiber-Reinforced Composites: A Review.  J. Reinf. Plas. Compos. 2019, 38, 15–30. [Google Scholar]
49.
Mathew L, Joseph R. Mechanical Properties of Short-Isora-Fiber-Reinforced Natural Rubber Composites: Effects of Fiber Length, Orientation, and Loading; Alkali Treatment; and Bonding Agent.  J. Appl. Polym. Sci. 2007, 103, 25065. [Google Scholar]
50.
Pickering KL, Efendy MGA, Le TM. A Review of Recent Developments in Natural Fibre Composites and Their Mechanical Performance.  Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar]
51.
Jayamaui E, Rahman MR, Benhur DA, Bakri MK, Kakair A, Khan A. Comparative Study of Fly Ash/Sugarcane Fiber Reinforced Polymer Composites Properties.  BioResources 2020, 15, 5514–5531. [Google Scholar]
52.
Shrigandhi GD, Kothavale BS. Biodegradable Composites for Filament Winding Process.  Mater. Today Proc. 2021, 42, 2762–2768. [Google Scholar]
53.
Cazaurang‐Martinez MN, Herrera‐Franco PJ, Gonzalez‐Chi PI, Aguilar‐Vega M. Physical and Mechanical Properties of Henequen Fibers.  J. Appl. Polym. Sci. 1991, 43, 749–756. [Google Scholar]
54.
Pannu AS, Singh S, Dhawan V. Effect of Alkaline Treatment on Mechanical Properties of Biodegradable Composite (BF/PLA) Rod.  Mater. Today Proc. 2021, 46, 9367–9371. [Google Scholar]
55.
Lo Re G, Spinella S, Boujemaoui A, Vilaseca F, Larsson PT, Adås F, et al. Poly(ϵ-Caprolactone) Biocomposites Based on Acetylated Cellulose Fibers and Wet Compounding for Improved Mechanical Performance.  ACS Sustain. Chem. Eng. 2018, 6, 6753–6760. [Google Scholar]
56.
Abdullah NSE, Salim N, Roslan R. Investigation on the Effect of Alkaline Treatment on Seaweed/Polypropylene (SW/PP) Blend Composites.  Mater. Today Proc. 2022, 51, 1362–1366. [Google Scholar]
57.
Tran TPT, Bénézet JC, Bergeret A. Rice and Einkorn Wheat Husks Reinforced Poly(Lactic Acid) (PLA) Biocomposites: Effects of Alkaline and Silane Surface Treatments of Husks.  Ind. Crops Prod. 2014, 58, 111–124. [Google Scholar]
58.
Zaman HU, Khan RA. Acetylation Used for Natural Fiber/Polymer Composites.  J. Thermoplast. Compos. Mater. 2021, 34, 3–23. [Google Scholar]
59.
Kivade SB, Gunge A, Nagamadhu M, Rajole S. Mechanical and Dynamic Mechanical Behavior of Acetylation-Treated Plain Woven Banana Reinforced Biodegradable Composites. Adv. Compos. Hybrid Mater. 2022, 5, 144–158. [Google Scholar]
60.
Mittal V, Saini R, Sinha S. Natural Fiber-Mediated Epoxy Composites – A Review.  Compos. Part B Eng. 2016, 99, 425–435. [Google Scholar]
61.
Izwan SM, Sapuan SM, Zuhri MYM, Mohamed AR. Thermal Stability and Dynamic Mechanical Analysis of Benzoylation Treated Sugar Palm/Kenaf Fiber Reinforced Polypropylene Hybrid Composites.  Polymers 2021, 13, 2961. [Google Scholar]
62.
Dehouche N, Idres C, Kaci M, Zembouai I, Bruzaud S. Effects of Various Surface Treatments on Aloe vera Fibers Used as Reinforcement in Poly(3-Hydroxybutyrate-Co-3-Hydroxyhexanoate) (PHBHHx) Biocomposites.  Polym. Degrad. Stab. 2020, 175, 109131. [Google Scholar]
63.
Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM. The Effect of Fiber Treatment on the Mechanical Properties of Unidirectional Sisal-Reinforced Epoxy Composites.  Compos. Sci. Technol. 2001, 61, 1437–1447. [Google Scholar]
64.
Daghigh V, Lacy TE, Pittman CU, Daghigh H. Influence of Maleated Polypropylene Coupling Agent on Mechanical and Thermal Behavior of Latania Fiber-Reinforced PP/EPDM Composites. Polym. Compos. 2018, 39, E1751–E1759. [Google Scholar]
65.
Chun KS, Husseinsyah S, Osman H. Utilization of Cocoa Pod Husk as Filler in Polypropylene Biocomposites: Effect of Maleated Polypropylene.  J. Thermoplast. Compos. Mater. 2015, 28, 1507–1521. [Google Scholar]
66.
Rabhi S, Benghanem N, Abdi S. Comparative Study of Two Biocomposites: Effect of Date Stone Flour Treated with Potassium Permanganate as a Filler on the Morphological and Elastic Properties.  J. Compos. Mater. 2022, 56, 1071–1089. [Google Scholar]
67.
George G, Jose ET, Jayanarayanan K, Nagarajan ER, Skrifvars M, Joseph K. Novel Bio-Commingled Composites Based on Jute/Polypropylene Yarns: Effect of Chemical Treatments on the Mechanical Properties.  Compos. Part A Appl. Sci. Manuf. 2012, 43, 219–230. [Google Scholar]
68.
Li X, Tabil LG, Panigrahi S. Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review.  J. Polym. Environ. 2007, 15, 25–33. [Google Scholar]
69.
Sabri MNIM, Bakar MBA, Masri MN, Mohamed M, Noriman NZ, Dahham OS, et al. Effect of Chemical Treatment on Mechanical and Physical Properties of Non-Woven Kenaf Fiber Mat Reinforced Polypropylene Biocomposites.  AIP Conf. Proc. 2020, 2213, 20262. [Google Scholar]
70.
Gulati D, Sain M. Fungal-Modification of Natural Fibers: A Novel Method of Treating Natural Fibers for Composite Reinforcement.  J. Polym. Environ. 2006, 14, 347–352. [Google Scholar]
71.
Vilaseca F, Corrales F, Llop MF, Pelach MA, Mutjé P. Chemical Treatment for Improving Wettability of Biofibres into Thermoplastic Matrices. Compos. Interfaces 2005, 12, 725–738. [Google Scholar]
72.
Roy K, Debnath SC, Tzounis L, Pongwisuthiruchte A, Potiyaraj P. Effect of Various Surface Treatments on the Performance of Jute Fibers Filled Natural Rubber (NR) Composites.  Polymers 2020, 12, 369. [Google Scholar]
73.
Satyanarayana KG, Arizaga GGC, Wypych F. Biodegradable Composites Based on Lignocellulosic Fibers—An Overview.  Prog. Polym. Sci. 2009, 34, 982–1021. [Google Scholar]
74.
Bhagabati P. Biopolymers and Biocomposites-Mediated Sustainable High-Performance Materials for Automobile Applications. In Sustainable Nanocellulose and Nanohydrogels from Natural Sources; Elsevier: Oxford, UK, 2020; pp. 197–216.
75.
Calori IR, Braga G, de Jesus PdCC, Bi H, Tedesco AC. Polymer Scaffolds as Drug Delivery Systems.  Eur. Polym. J. 2020, 129, 109621. [Google Scholar]
76.
George A, Sanjay MR, Srisuk R, Parameswaranpillai J, Siengchin S. A Comprehensive Review on Chemical Properties and Applications of Biopolymers and Their Composites. Int. J. Biol. Macromol. 2020, 154, 329–338. [Google Scholar]
77.
Christian SJ. Natural Fibre-Reinforced Noncementitious Composites (Biocomposites). In Nonconventional and Vernacular Construction Materials: Characterisation, Properties and Applications; Woodhead Publishing: Sawston, UK, 2019.
78.
Nair NR, Sekhar VC, Nampoothiri KM, Pandey A. Biodegradation of Biopolymers. In Current Developments in Biotechnology and Bioengineering: Production, Isolation and Purification of Industrial Products; Elsevier: Oxford, UK, 2017, 739–755.
79.
Mohamed SAN, Zainudin ES, Sapuan SM, Azaman MD, Arifin AMT. Introduction to Natural Fiber Reinforced Vinyl Ester and Vinyl Polymer Composites. In Natural Fiber Reinforced Vinyl Ester and Vinyl Polymer Composites: Development, Characterization and Applications; Woodhead Publishing: Sawston, UK, 2018.
80.
Ramesh M, Muthukrishnan M. 25—Biodegradable Polymer Blends and Composites for Food-Packaging Applications. In Biodegradable Polymers, Blends and Composites; Woodhead Publishing: Sawston, UK, 2022; pp. 693–716.
81.
Ramesh M, Muthukrishnan M. 25—Biodegradable Polymer Blends and Composites for Food-Packaging Applications. In Biodegradable Polymers, Blends and Composites; Woodhead Publishing: Sawston, UK, 2022; pp. 693–716.
82.
Zhou J, Wang B, Xu C, Xu YZ, Tan H, Zhang X, et al. Performance of Composite Materials by Wood Fiber/Polydopamine/Silver Modified PLA and the Antibacterial Property.  J. Mater. Res. Technol. 2022, 18, 428–438. [Google Scholar]
83.
Deshmukh K, Basheer Ahamed M, Deshmukh RR, Khadheer Pasha SK, Bhagat PR, Chidambaram K. 3—Biopolymer Composites with High Dielectric Performance: Interface Engineering. In Biopolymer Composites in Electronics; Elsevier: Oxford, UK, 2017; pp. 27–128.
84.
Ingrao C, Tricase C, Cholewa-Wójcik A, Kawecka A, Rana R, Siracusa V. Polylactic Acid Trays for Fresh-Food Packaging: A Carbon Footprint Assessment.  Sci. Total Environ. 2015, 537, 385–398. [Google Scholar]
85.
Juodeikiene G, Vidmantiene D, Basinskiene L, Cernauskas D, Bartkiene E, Cizeikiene D. Green Metrics for Sustainability of Biobased Lactic Acid from Starchy Biomass vs Chemical Synthesis.  Catal. Today 2015, 239, 11–16. [Google Scholar]
86.
Zwawi M. A Review on Natural Fiber Bio-Composites, Surface Modifications and Applications.  Molecules 2021, 26, 404. [Google Scholar]
87.
Koller M. Advances in Polyhydroxyalkanoate (PHA) Production, Volume 2. Bioengineering 2020, 7, 24. [Google Scholar]
88.
Elmowafy E, Abdal-Hay A, Skouras A, Tiboni M, Casettari L, Guarino V. Polyhydroxyalkanoate (PHA): Applications in Drug Delivery and Tissue Engineering.  Expert Rev. Med. Devices 2019, 16, 467–482. [Google Scholar]
89.
Liu Y, Ahmed S, Sameen DE, Wang Y, Lu R, Dai J, et al. A Review of Cellulose and Its Derivatives in Biopolymer-Based for Food Packaging Application.  Trends Food Sci. Technol. 2021, 112, 532–546. [Google Scholar]
90.
Shaghaleh H, Xu X, Wang S. Current Progress in Production of Biopolymeric Materials Based on Cellulose, Cellulose Nanofibers, and Cellulose Derivatives.  RSC Adv. 2018, 8, 825–842. [Google Scholar]
91.
Ichwan M, Onyianta AJ, Trask RS, Etale A, Eichhorn SJ. Production and Characterization of Cellulose Nanocrystals of Different Allomorphs from Oil Palm Empty Fruit Bunches for Enhancing Composite Interlaminar Fracture Toughness.  Carbohydr. Polym. Technol. Appl. 2023, 5, 100272. [Google Scholar]
92.
Małachowska E, Dubowik M, Lipkiewicz A, Przybysz K, Przybysz P. Analysis of Cellulose Pulp Characteristics and Processing Parameters for Efficient Paper Production.  Sustainability 2020, 12, 7219. [Google Scholar]
93.
Karandikar S, Mirani A, Waybhase V, Patravale VB, Patankar S. Nanovaccines for Oral Delivery-Formulation Strategies and Challenges. In Nanostructures for Oral Medicine; Elsevier: Oxford, UK, 2017; pp. 263–293.
94.
Zheng S, Bellido-Aguilar DA, Hu J, Huang Y, Zhao X, Wang Z, et al. Waterborne Bio-Based Epoxy Coatings for the Corrosion Protection of Metallic Substrates.  Progr. Org. Coat. 2019, 136, 105265. [Google Scholar]
95.
Wang H, Hassan EAM, Memon H, Elagib THH, AllaIdris FA. Characterization of Natural Composites Fabricated from Abutilon-Fiber-Reinforced Poly (Lactic Acid).  Processes 2019, 7, 583. [Google Scholar]
96.
Terry JS, Taylor AC. The Properties and Suitability of Commercial Bio‐based Epoxies for Use in Fiber‐reinforced Composites.  J. Appl. Polym. Sci. 2021, 138, 50417. [Google Scholar]
97.
Aliotta L, Seggiani M, Lazzeri A, Gigante V, Cinelli P. A Brief Review of Poly (Butylene Succinate) (PBS) and Its Main Copolymers: Synthesis, Blends, Composites, Biodegradability, and Applications.  Polymers 2022, 14, 844. [Google Scholar]
98.
Mondal MIH, Islam MM, Haque MI, Ahmed F. Natural, Biodegradable, Biocompatible and Bioresorbable Medical Textile Materials. In Medical Textiles from Natural Resources; Woodhead Publishing: Sawston, UK, 2022; pp. 87–116.
99.
Deepa C, Ramesh M. Biocomposites for Prosthesis. In Green Biocomposites for Biomedical Engineering: Design, Properties, and Applications; Woodhead Publishing: Sawston, UK, 2021; pp. 339–351.
100.
Abdulkhani A, Echresh Z, Allahdadi M. Effect of Nanofibers on the Structure and Properties of Biocomposites. In Fiber-Reinforced Nanocomposites: Fundamentals and Applications; Elsevier: Oxford, UK, 2020; pp. 321–357.
101.
Prakash SO, Sahu P, Madhan M, Johnson Santhosh A. A Review on Natural Fibre-Reinforced Biopolymer Composites: Properties and Applications.  Int. J. Polym. Sci. 2022, 2022, 7820731. [Google Scholar]
102.
Tekinalp HL, Meng X, Lu Y, Kunc V, Love LJ, Peter WH, et al. High Modulus Biocomposites via Additive Manufacturing: Cellulose Nanofibril Networks as “Microsponges”.  Compos. Part B Eng. 2019, 173, 106817. [Google Scholar]
103.
Baghaei B, Skrifvars M. All-Cellulose Composites: A Review of Recent Studies on Structure, Properties and Applications.  Molecules 2020, 25, 2836. [Google Scholar]
104.
Soykeabkaew N, Nishino T, Peijs T. All-Cellulose Composites of Regenerated Cellulose Fibres by Surface Selective Dissolution.  Compos. Part A Appl. Sci. Manuf. 2009, 40, 321–328. [Google Scholar]
105.
Mofokeng JP, Luyt AS, Tábi T, Kovács J. Comparison of Injection Moulded, Natural Fibre-Reinforced Composites with PP and PLA as Matrices.  J. Thermoplast. Compos. Mater. 2012, 25, 927–948. [Google Scholar]
106.
Maiti P, Nandi AK. Influence of Chain Structure on the Miscibility of Poly(Vinylidene Fluoride) with Poly(Methyl Acrylate).  Macromolecules 1995, 28, 8511–8516. [Google Scholar]
107.
Ilyas RA, Zuhri MYM, Norrrahim MNF, Misenan MSM, Jenol MA, Samsudin SA, et al. Natural Fiber-Reinforced Polycaprolactone Green and Hybrid Biocomposites for Various Advanced Applications. Polymers 2022, 14, 182. [Google Scholar]
108.
Na H, Huang J, Xu H, Liu F, Xie L, Zhu B, et al. Structure and Properties of PLA Composite Enhanced with Biomass Fillers from Herbaceous Plants. J. Renew. Mater. 2023, 11, 491–503. [Google Scholar]
109.
Solechan S, Suprihanto A, Widyanto SA, Triyono J, Fitriyana DF, Siregar JP, et al. Characterization of PLA/PCL/Nano-Hydroxyapatite (NHA) Biocomposites Prepared via Cold Isostatic Pressing.  Polymers 2023, 15, 559. [Google Scholar]
110.
Ruz-Cruz MA, Herrera-Franco PJ, Flores-Johnson EA, Moreno-Chulim MV, Galera-Manzano LM, Valadez-González A. Thermal and Mechanical Properties of PLA-Based Multiscale Cellulosic Biocomposites.  J. Mater. Res. Technol. 2022, 18, 485–495. [Google Scholar]
111.
Siqueira DD, Luna CBB, Ferreira ESB, Araújo EM, Wellen RMR. Tailored PCL/Macaíba Fiber to Reach Sustainable Biocomposites.  J. Mater. Res. Technol. 2020, 9, 9691–9708. [Google Scholar]
112.
Rath A, Grisin B, Pallicity TD, Glaser L, Guhathakurta J, Oehlsen N, et al. Fabrication of Chitosan-Flax Composites with Differing Molecular Weights and Its Effect on Mechanical Properties.  Compos. Sci. Technol. 2023, 235, 109952. [Google Scholar]
113.
de Oliveira Júnior JN, Lopes FPD, Simonassi NT, Lopera HAC, Monteiro SN, Vieira CMF. Ecofriendly Panels for Building with Eucalyptus Sawdust and Vegetal Polyurethane Resin: A Mechanical Evaluation.  Case Stud. Constr. Mater. 2023, 18, e01839. [Google Scholar]
114.
Shiroud Heidari B, Muiños Lopez E, Harrington E, Ruan R, Chen P, Davachi SM, et al. Novel Hybrid Biocomposites for Tendon Grafts: The Addition of Silk to Polydioxanone and Poly(Lactide-Co-Caprolactone) Enhances Material Properties, in Vitro and in Vivo Biocompatibility.  Bioact. Mater. 2023, 25, 291–306. [Google Scholar]
115.
Okubo K, Fujii T, Thostenson ET. Multi-Scale Hybrid Biocomposite: Processing and Mechanical Characterization of Bamboo Fiber Reinforced PLA with Microfibrillated Cellulose.  Compos. Part A Appl. Sci. Manuf. 2009, 40, 469–475. [Google Scholar]
116.
Ceraulo M, La Mantia FP, Mistretta MC, Titone V. The Use of Waste Hazelnut Shells as a Reinforcement in the Development of Green Biocomposites.  Polymers 2022, 14, 2151. [Google Scholar]
117.
Ho MP, Wang H, Lee JH, Ho CK, Lau KT, Leng J, et al. Critical Factors on Manufacturing Processes of Natural Fibre Composites.  Compos. Part B Eng. 2012, 43, 3549–3562. [Google Scholar]
118.
Raji M, Abdellaoui H, Essabir H, Kakou C-A, Bouhfid R, el kacem Qaiss A. 3—Prediction of the Cyclic Durability of Woven-Hybrid Composites. In Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Woodhead Publishing: Sawston, UK, 2019; pp. 27–62.
119.
Wu Y, Xia C, Cai L, Garcia AC, Shi SQ. Development of Natural Fiber-Reinforced Composite with Comparable Mechanical Properties and Reduced Energy Consumption and Environmental Impacts for Replacing Automotive Glass-Fiber Sheet Molding Compound.  J. Clean. Prod. 2018, 184, 92–10. [Google Scholar]
120.
Domone P, Illston J. (Eds.) Manufacturing Techniques for Polymer Composites Used in Construction. In Construction Materials: Their Nature and Behaviour, 4th ed.; CRC Press: Boca Raton, FL, USA, 2018.
121.
Gupta MK, Singh R. PLA-Coated Sisal Fibre-Reinforced Polyester Composite: Water Absorption, Static and Dynamic Mechanical Properties.  J. Compos. Mater. 2019, 53, 65–72. [Google Scholar]
122.
Sukmawan R, Takagi H, Nakagaito AN. Strength Evaluation of Cross-Ply Green Composite Laminates Reinforced by Bamboo Fiber.  Compos. Part B Eng. 2016, 84, 9–16. [Google Scholar]
123.
Azlin MNM, Sapuan SM, Zuhri MYM, Zainudin ES. Effect of Stacking Sequence and Fiber Content on Mechanical and Morphological Properties of Woven Kenaf/Polyester Fiber Reinforced Polylactic Acid (PLA) Hybrid Laminated Composites. J. Mater. Res. Technol. 2022, 16, 1190–1201. [Google Scholar]
124.
Anbukarasu P, Sauvageau D, Elias A. The Effects of Solvent Casting Temperature and Physical Aging on Polyhydroxybutyrate-Graphene Nanoplatelet Composites.  Polym. Compos. 2021, 42, 1451–1461. [Google Scholar]
125.
Kong I, Tshai KY, Hoque ME. Manufacturing of Natural Fibre-Reinforced Polymer Composites by Solvent Casting Method. In Manufacturing of Natural Fibre Reinforced Polymer Composites; Springer: Berlin/Heidelberg, Germany, 2015; pp. 331–349.
126.
Khan MA, Hussain Z, Liaqat U, Liaqat MA, Zahoor M. Preparation of Pbs/Plla/Hap Composites by the Solution Casting Method: Mechanical Properties and Biocompatibility.  Nanomaterials 2020, 10, 1778. [Google Scholar]
127.
Kale RD, Gorade VG, Parmaj O. Development and Characterization Study of Silk Filament Reinforced Chitosan Biocomposite.  J. Nat. Fibers 2020, 17, 1465878. [Google Scholar]
128.
Liu DY, Yuan XW, Bhattacharyya D, Easteal AJ. Characterisation of Solution Cast Cellulose Nanofibre - Reinforced Poly(Lactic Acid).  Express Polym. Lett. 2010, 4, 26–31. [Google Scholar]
129.
Oyeoka HC, Ewulonu CM, Nwuzor IC, Obele CM, Nwabanne JT. Packaging and Degradability Properties of Polyvinyl Alcohol/Gelatin Nanocomposite Films Filled Water Hyacinth Cellulose Nanocrystals.  J. Bioresour. Bioprod. 2021, 6, 168–185. [Google Scholar]
130.
Yokesahachart C, Yoksan R, Khanoonkon N, Mohanty AK, Misra M. Effect of Jute Fibers on Morphological Characteristics and Properties of Thermoplastic Starch/Biodegradable Polyester Blend.  Cellulose 2021, 28, 5513–5530. [Google Scholar]
131.
Vandi LJ, Chan CM, Werker A, Richardson D, Laycock B, Pratt S. Experimental Data for Extrusion Processing and Tensile Properties of Poly(Hydroxybutyrate-Co-Hydroxyvalerate) (PHBV) Polymer and Wood Fibre Reinforced PHBV Biocomposites.  Data Brief 2019, 22, 687–692. [Google Scholar]
132.
Gupta A, Chudasama B, Chang BP, Mekonnen T. Robust and Sustainable PBAT—Hemp Residue Biocomposites: Reactive Extrusion Compatibilization and Fabrication.  Compos. Sci. Technol. 2021, 215, 109014. [Google Scholar]
133.
Rabbi MS, Islam T, Islam GMS. Injection-Molded Natural Fiber-Reinforced Polymer Composites–a Review.  Int. J. Mech. Mater. Eng. 2021, 16, 15. [Google Scholar]
134.
Agüero Á, Garcia-Sanoguera D, Lascano D, Rojas-Lema S, Ivorra-Martinez J, Fenollar O, et al. Evaluation of Different Compatibilization Strategies to Improve the Performance of Injection-Molded Green Composite Pieces Made of Polylactide Reinforced with Short Flaxseed Fibers.  Polymers 2020, 12, 0821. [Google Scholar]
135.
Shaharuddin SIS, Salit MS, Zainudin ES. A Review of the Effect of Moulding Parameters on the Performance of Polymeric Composite Injection Moulding.  Turk. J. Eng. Environ. Sci. 2006, 30, 23–34. [Google Scholar]
136.
Bax B, Müssig J. Impact and Tensile Properties of PLA/Cordenka and PLA/Flax Composites.  Compos. Sci. Technol. 2008, 68, 1601–1607. [Google Scholar]
137.
Huda MS, Mohanty AK, Drzal LT, Schut E, Misra M. “Green” Composites from Recycled Cellulose and Poly(Lactic Acid): Physico-Mechanical and Morphological Properties Evaluation.  J. Mater. Sci. 2005, 40, 4221–4229. [Google Scholar]
138.
Verma N, Singh MK, Zafar S, Pathak H. Comparative Study of In-Situ Temperature Measurement during Microwave-Assisted Compression-Molding and Conventionally Compression-Molding Process.  CIRP J. Manuf. Sci. Technol. 2021, 35, 336–345. [Google Scholar]
139.
Asgher M, Ahmad Z, Iqbal HMN. Bacterial Cellulose-Assisted de-Lignified Wheat Straw-PVA Based Bio-Composites with Novel Characteristics.  Carbohydr. Polym. 2017, 161, 244–252. [Google Scholar]
140.
Ochi S. Mechanical Properties of Kenaf Fibers and Kenaf/PLA Composites.  Mech. Mater. 2008, 40, 446–452. [Google Scholar]
141.
Porras A, Maranon A. Development and Characterization of a Laminate Composite Material from Polylactic Acid (PLA) and Woven Bamboo Fabric.  Compos. Part B Eng. 2012, 43, 2782–2788. [Google Scholar]
142.
Nanthananon P, Seadan M, Pivsa-Art S, Hiroyuki H, Suttiruengwong S. Biodegradable Polyesters Reinforced with Eucalyptus Fiber: Effect of Reactive Agents.  AIP Conf. Proc. 2017, 1914, 070012. [Google Scholar]
143.
Cuinat-Guerraz N, Dumont MJ, Hubert P. Environmental Resistance of Flax/Bio-Based Epoxy and Flax/Polyurethane Composites Manufactured by Resin Transfer Moulding. In Proceedings of 20th International Conference on Composite Materials, Copenhagen, Denmark, 19–24 July 2015.
144.
Tran P, Graiver D, Narayan R. Biocomposites Synthesized from Chemically Modified Soy Oil and Biofibers.  J. Appl. Polym. Sci. 2006, 102, 69–75. [Google Scholar]
145.
Reinhardt M, Kaufmann J, Kausch M, Kroll L. PLA-Viscose-Composites with Continuous Fibre Reinforcement for Structural Applications.  Procedia Mater. Sci. 2013, 2, 137–143. [Google Scholar]
146.
Baghaei B, Skrifvars M, Berglin L. Characterization of Thermoplastic Natural Fibre Composites Made from Woven Hybrid Yarn Prepregs with Different Weave Pattern.  Compos. Part A Appl. Sci. Manuf. 2015, 76, 154–161. [Google Scholar]
147.
Mindermann P, Pérez MG, Knippers J, Gresser GT. Investigation of the Fabrication Suitability, Structural Performance, and Sustainability of Natural Fibers in Coreless Filament Winding.  Materials 2022, 15, 3260. [Google Scholar]
148.
Tripathi S, Mandal SS, Bauri S, Maiti P. 3D Bioprinting and Its Innovative Approach for Biomedical Applications.  MedComm 2023, 4, e194. [Google Scholar]
149.
Zhang W, Wang C, Gu S, Yu H, Cheng H, Wang G. Physical-Mechanical Properties of Bamboo Fiber Composites Using Filament Winding.  Polymers 2021, 13, 2913. [Google Scholar]
150.
Balla VK, Kate KH, Satyavolu J, Singh P, Tadimeti JGD. Additive Manufacturing of Natural Fiber Reinforced Polymer Composites: Processing and Prospects.  Compos. Part B Eng. 2019, 17, 106956. [Google Scholar]
151.
Arrigo R, Frache A. FDM Printability of PLA Based-Materials: The Key Role of the Rheological Behavior.  Polymers 2022, 14, 1754. [Google Scholar]
152.
Bhagia S, Bornani K, Agarwal R, Satlewal A, Ďurkovič J, Lagaňa R, et al. Critical Review of FDM 3D Printing of PLA Biocomposites Filled with Biomass Resources, Characterization, Biodegradability, Upcycling and Opportunities for Biorefineries.  Appl. Mater. Today 2021, 24, 101078. [Google Scholar]
153.
Niang B, Schiavone N, Askanian H, Verney V, Ndiaye D, Diop AB. Development and Characterization of PBSA-Based Green Composites in 3D-Printing by Fused Deposition Modelling.  Materials 2022, 15, 7570. [Google Scholar]
154.
Le Duigou A, Correa D, Ueda M, Matsuzaki R, Castro M. A Review of 3D and 4D Printing of Natural Fibre Biocomposites.  Mater. Des. 2020, 194, 108911. [Google Scholar]
155.
Depuydt D, Balthazar M, Hendrickx K, Six W, Ferraris E, Desplentere F, et al. Production and Characterization of Bamboo and Flax Fiber Reinforced Polylactic Acid Filaments for Fused Deposition Modeling (FDM).  Polym. Compos. 2019, 40, 1951–1963. [Google Scholar]
156.
Agaliotis EM, Ake-Concha BD, May-Pat A, Morales-Arias JP, Bernal C, Valadez-Gonzalez A, et al. Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural Fiber.  Polymers 2022, 14, 3976. [Google Scholar]
157.
Park JB, Lakes RS. (Eds.) Characterization of Materials—I. In Biomaterials; Springer: New York, NY, USA, 2007; pp. 41–81.
158.
Cross JO, Opila RL, Boyd IW, Kaufmann EN. Materials Characterization and the Evolution of Materials.  MRS Bull. 2015, 40, 1019–1034. [Google Scholar]
159.
Lin J, Yang Z, Hu X, Hong G, Zhang S, Song W. The Effect of Alkali Treatment on Properties of Dopamine Modification of Bamboo Fiber/Polylactic Acid Composites.  Polymers 2018, 10, 403. [Google Scholar]
160.
Sanjay MR, Siengchin S, Parameswaranpillai J, Jawaid M, Pruncu CI, Khan A. A Comprehensive Review of Techniques for Natural Fibers as Reinforcement in Composites: Preparation, Processing and Characterization.  Carbohydr. Polym. 2019, 207, 108–121. [Google Scholar]
161.
Zhu Z, Hao M, Zhang N. Influence of Contents of Chemical Compositions on the Mechanical Property of Sisal Fibers and Sisal Fibers Reinforced PLA Composites.  J. Nat. Fibers 2020, 17, 101–112. [Google Scholar]
162.
Abraham E, Elbi PA, Deepa B, Jyotishkumar P, Pothen LA, Narine SS, Thomas S. X-Ray Diffraction and Biodegradation Analysis of Green Composites of Natural Rubber/Nanocellulose.  Polym. Degrad. Stab. 2012, 97, 2378–2387. [Google Scholar]
163.
Lorwanishpaisarn N, Sae-Oui P, Amnuaypanich S, Siriwong C. Fabrication of Untreated and Silane-Treated Carboxylated Cellulose Nanocrystals and Their Reinforcement in Natural Rubber Biocomposites.  Sci. Rep. 2023, 13, 2517. [Google Scholar]
164.
French AD.  Idealized Powder Diffraction Patterns for Cellulose Polymorphs.  Cellulose 2014, 21, 885–896. [Google Scholar]
165.
Somseemee O, Saeoui P, Schevenels FT, Siriwong C. Enhanced Interfacial Interaction between Modified Cellulose Nanocrystals and Epoxidized Natural Rubber via Ultraviolet Irradiation.  Sci. Rep. 2022, 12, 6682. [Google Scholar]
166.
Somseemee O, Sae-Oui P, Siriwong C. Reinforcement of Surface-Modified Cellulose Nanofibrils Extracted from Napier Grass Stem in Natural Rubber Composites.  Ind. Crops Prod. 2021, 171, 113881. [Google Scholar]
167.
Jayamani E, Loong TG, Bakri MK. Bin Comparative Study of Fourier Transform Infrared Spectroscopy (FTIR) Analysis of Natural Fibres Treated with Chemical, Physical and Biological Methods.  Polym. Bull. 2020, 77, 1605–1629. [Google Scholar]
168.
Smoca A. FTIR Spectroscopy Analysis of PLA Biocomposites Reinforced with Hemp Fibers.  Key Eng. Mater. 2020, 850, 112–117. [Google Scholar]
169.
Chen L, Zhu JY, Baez C, Kitin P, Elder T. Highly Thermal-Stable and Functional Cellulose Nanocrystals and Nanofibrils Produced Using Fully Recyclable Organic Acids.  Green Chem. 2016, 18, 3835–3843. [Google Scholar]
170.
Zhu B, Ma J, Wang J, Wu J, Peng D. Thermal, Dielectric and Compressive Properties of Hollow Glass Microsphere Filled Epoxy-Matrix Composites.  J. Reinf. Plas. Compos. 2012, 31, 1311–1326. [Google Scholar]
171.
Satsum A, Busayaporn W, Rungswang W, Soontaranon S, Thumanu K, Wanapu C. Structural and Mechanical Properties of Biodegradable Poly(Lactic Acid) and Pectin Composites: Using Bionucleating Agent to Improve Crystallization Behavior.  Polym. J. 2022, 54, 921–930. [Google Scholar]
172.
Bledzki AK, Jaszkiewicz A, Scherzer D. Mechanical Properties of PLA Composites with Man-Made Cellulose and Abaca Fibres.  Compos. Part A Appl. Sci. Manuf. 2009, 40, 404–412. [Google Scholar]
173.
Muthuraj R, Misra M, Mohanty AK. Biocomposite Consisting of Miscanthus Fiber and Biodegradable Binary Blend Matrix: Compatibilization and Performance Evaluation.  RSC Adv. 2017, 7, 27538–27548. [Google Scholar]
174.
Tengsuthiwat J, Yorseng K, Siengchin S, Parameswaranpillai J. Thermomechanical, Water Absorption, Ultraviolet Resistance and Laser-Assisted Electroless Plating Behavior of Cu2O and Melamine–Formaldehyde-Coated Sisal Fiber-Modified Poly(Lactic Acid) Composites.  Polym. Compos. 2019, 40, 25182. [Google Scholar]
175.
Dobrosielska M, Dobrucka R, Kozera P, Brząkalski D, Gabriel E, Głowacka J, Jałbrzykowski M, Kurzydłowski KJ, Przekop RE. Beeswax as a Natural Alternative to Synthetic Waxes for Fabrication of PLA/Diatomaceous Earth Composites.  Sci. Rep. 2023, 13, 1161. [Google Scholar]
176.
Bassyouni M. Dynamic Mechanical Properties and Characterization of Chemically Treated Sisal Fiber-Reinforced Polypropylene Biocomposites.  J. Reinf. Plas. Compos. 2018, 37, 1402–1417. [Google Scholar]
177.
Manral A, Ahmad F, Chaudhary V. Static and Dynamic Mechanical Properties of PLA Bio-Composite with Hybrid Reinforcement of Flax and Jute.  Mater. Today Proc. 2020, 25, 577–580. [Google Scholar]
178.
Neto JSS, Lima RAA, Cavalcanti DKK, Souza JPB, Aguiar RAA, Banea MD. Effect of Chemical Treatment on the Thermal Properties of Hybrid Natural Fiber-Reinforced Composites.  J. Appl. Polym. Sci. 2019, 136, 47154. [Google Scholar]
179.
Saba N, Jawaid M, Sultan MT.H. An Overview of Mechanical and Physical Testing of Composite Materials. In Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Woodhead Publishing: Sawston, UK, 2018; pp. 1–12. 
180.
ASTM-D638-14 Standard Test Method for Tensile Properties of Plastics; ASTM Standards; ASTM: West Conshohocken, PA, USA, 2014.
181.
ASTM D790-17 Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. D790; ASTM Standards; ASTM: West Conshohocken, PA, USA, 2012.
182.
Gadzama SW, Sunmonu OK, Isiaku US, Danladi A. Effects of Surface Modifications on the Mechanical Properties of Reinforced Pineapple Leaf Fibre Polypropylene Composites.  Adv. Chem. Eng. Sci. 2020, 10, 24–39. [Google Scholar]
183.
Fazal A, Fancey KS. Viscoelastically Prestressed Polymeric Matrix Composites – Effects of Test Span and Fibre Volume Fraction on Charpy Impact Characteristics.  Compos. Part B Eng. 2013, 44, 472–479. [Google Scholar]
184.
Singh R, Davim JP. Additive Manufacturing: Applications and Innovations; CRC Press: Boca Raton, FL, USA, 2018.
185.
Ismail H, Edyham MR, Wirjosentono B. Bamboo Fibre Filled Natural Rubber Composites: The Effects of Filler Loading and Bonding Agent.  Polym. Test. 2002, 21, 139–144. [Google Scholar]
186.
Nair SS, Chen H, Peng Y, Huang Y, Yan N. Polylactic Acid Biocomposites Reinforced with Nanocellulose Fibrils with High Lignin Content for Improved Mechanical, Thermal, and Barrier Properties.  ACS Sustain. Chem. Eng. 2018, 6, 10058–10068. [Google Scholar]
187.
Farhat H. Materials and Coating Technologies. In Operation, Maintenance, and Repair of Land-Based Gas Turbines; Elsevier: Oxford, UK, 2021.
188.
Leterrier Y. Mechanics of Curvature and Strain in Flexible Organic Electronic Devices. In Handbook of Flexible Organic Electronics: Materials, Manufacturing and Applications; Woodhead Publishing: Sawston, UK, 2015.
189.
de Bilbao E, Soulat D, Hivet G, Launay J, Gasser A. Bending Test of Composite Reinforcements. Int. J. Mater. Form. 2008, 1, 835–838. [Google Scholar]
190.
Habibi M, Laperrière L. Combining Digital Image Correlation and Acoustic Emission to Characterize the Flexural Behavior of Flax Biocomposites.  Appl. Mech. 2023, 4, 21. [Google Scholar]
191.
Noorunnisa Khanam P, Al-Maadeed MA, Naseema Khanam P. 8—Silk as a Reinforcement in Polymer Matrix Composites. In Advances in Silk Science and Technology; Woodhead Publishing: Sawston, UK, 2015; pp. 143–170.
192.
Dann T, Malbon C. Chapter Eight—Tearing or Ripping of Fabrics. In Forensic Textile Science; Woodhead Publishing: Sawston, UK, 2017; pp. 169–180.
193.
El Miri N, Abdelouahdi K, Zahouily M, Fihri A, Barakat A, Solhy A, et al. Bio-Nanocomposite Films Based on Cellulose Nanocrystals Filled Polyvinyl Alcohol/Chitosan Polymer Blend.  J. Appl. Polymer Sci. 2015, 132, 42004. [Google Scholar]
194.
Trache D, Donnot A, Khimeche K, Benelmir R, Brosse N.  Physico-Chemical Properties and Thermal Stability of Microcrystalline Cellulose Isolated from Alfa Fibres.  Carbohydr. Polym. 2014, 104, 223–230. [Google Scholar]
195.
Nam S, Condon BD, Delhom CD, Fontenot KR. Silver-Cotton Nanocomposites: Nano-Design of Microfibrillar Structure Causes Morphological Changes and Increased Tenacity.  Sci. Rep. 2016, 6, 37320. [Google Scholar]
196.
Joshi J, Homburg SV, Ehrmann A. Atomic Force Microscopy (AFM) on Biopolymers and Hydrogels for Biotechnological Applications—Possibilities and Limits. Polymers 2022, 14, 1267. [Google Scholar]
197.
Raj G, Balnois E, Baley C, Grohens Y. Interfacial Studies of Polylactic Acid (PLA)/Flax Biocomposite: From Model Surface to Fibre Treatment. In Proceedings of the 17th ICCM International Conferences on Composite Materials, Edinburgh, UK, 27–31 July 2009.
198.
Zlotnikov I, Zolotoyabko E, Fratzl P. Nano-Scale Modulus Mapping of Biological Composite Materials: Theory and Practice.  Progr. Mater. Sci. 2017, 87, 292–320. [Google Scholar]
199.
Huang S, Wang X, Zhang Y, Meng Y, Hua F, Xia X. Cellulose Nanofibers/Polyvinyl Alcohol Blends as an Efficient Coating to Improve the Hydrophobic and Oleophobic Properties of Paper.  Sci. Rep. 2022, 12, 16148. [Google Scholar]
200.
Mazzanti V, Mollica F. A Review of Wood Polymer Composites Rheology and Its Implications for Processing.  Polymers 2020, 12, 2304. [Google Scholar]
201.
Zuhudi NZM, Fadzil FAM, Zulkifli M, Yahaya ANA, Nur NM, Rahman NAA, et al. A rheological study of fibre reinforced composites and the factors that affect rheological behaviour during impregnation process: a review.  J. Adv. Res. Fluid Mech. Therm. Sci. 2022, 89, 167–181. [Google Scholar]
202.
Hodzic A. Re-Use, Recycling and Degradation of Composites. In Green Composites: Polymer Composites and the Environment; CRC Press: Boca Raton, FL, USA, 2004.
203.
Maiti P, Kumar S. Nanoparticle Induced Controlled Biodegradation of Polymers; In Environment Friendly Biodegradable Polymers: Present and Future; Mallick Book Centre: Kolkata, India, 2016.
204.
Ali SS, Elsamahy T, Al-Tohamy R, Zhu D, Mahmoud YAG, Koutra E, et al. Plastic Wastes Biodegradation: Mechanisms, Challenges and Future Prospects.  Sci. Total Environ. 2021, 780, 146590. [Google Scholar]
205.
Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE. Polymer Biodegradation: Mechanisms and Estimation Techniques - A Review.  Chemosphere 2008, 73, 429–442. [Google Scholar]
206.
Ahmed T, Shahid M, Azeem F, Rasul I, Shah AA, Noman M, et al. Biodegradation of Plastics: Current Scenario and Future Prospects for Environmental Safety.  Environ. Sci. Pollut. Res. 2018, 25, 7287–7298. [Google Scholar]
207.
Kumar S, Maiti P. Controlled Biodegradation of Polymers Using Nanoparticles and Its Application.  RSC Adv. 2016, 6, 67449–67480. [Google Scholar]
208.
Kumar S, Maiti P. Understanding the Controlled Biodegradation of Polymers Using Nanoclays.  Polymer 2015, 76, 25–33. [Google Scholar]
209.
Kumar S, Singh S, Senapati S, Singh AP, Ray B, Maiti P. Controlled Drug Release through Regulated Biodegradation of Poly(Lactic Acid) Using Inorganic Salts.  Int. J. Biol. Macromol. 2017, 104, 487–497. [Google Scholar]
210.
Banerjee A, Chatterjee K, Madras G. Enzymatic Degradation of Polymers: A Brief Review.  Mater. Sci. Technol. 2014, 30, 567–573. [Google Scholar]
211.
Zaaba NF, Jaafar M.  A Review on Degradation Mechanisms of Polylactic Acid: Hydrolytic, Photodegradative, Microbial, and Enzymatic Degradation.  Polym. Eng. Sci. 2020, 60, 2061–2075. [Google Scholar]
212.
Xu L, Crawford K, Gorman CB. Effects of Temperature and PH on the Degradation of Poly(Lactic Acid) Brushes.  Macromolecules 2011, 44, 4777–4782. [Google Scholar]
213.
Hegyesi N, Zhang Y, Kohári A, Polyák P, Sui X, Pukánszky B. Enzymatic Degradation of PLA/Cellulose Nanocrystal Composites.  Ind. Crops Prod. 2019, 141, 111799. [Google Scholar]
214.
Shi K, Ma Q, Su T, Wang Z. Preparation of Porous Materials by Selective Enzymatic Degradation: Effect of in Vitro Degradation and in Vivo Compatibility.  Sci. Rep. 2020, 10, 7031. [Google Scholar]
215.
Vasile C, Pamfil D, Râpă M, Darie-Niţă RN, Mitelut AC, Popa EE, Popescu PA, Draghici MC, Popa ME. Study of the Soil Burial Degradation of Some PLA/CS Biocomposites.  Compos. Part B Eng. 2018, 142, 251–262. [Google Scholar]
216.
Yaacob ND, Ismail H, Ting SS. Soil Burial of Polylactic Acid/Paddy Straw Powder Biocomposite.  BioResources 2016, 11, 1255–1269. [Google Scholar]
217.
Slezak R, Krzystek L, Puchalski M, Krucińska I, Sitarski A. Degradation of Bio-Based Film Plastics in Soil under Natural Conditions.  Sci. Total Environ. 2023, 866, 161401. [Google Scholar]
218.
Sankhla IS, Sharma G, Tak A. Fungal Degradation of Bioplastics: An Overview. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Oxford, UK, 2020; pp. 35–47.
219.
Stoleru E, Hitruc EG, Vasile C, Oprică L. Biodegradation of Poly(Lactic Acid)/Chitosan Stratified Composites in Presence of the Phanerochaete Chrysosporium Fungus.  Polym. Degrad. Stab. 2017, 143, 118–129. [Google Scholar]
220.
Soutis C, Yi XS, Bachmann J. How green composite materials could benefit aircraft construction.  Sci. China Technol. Sci. 2019, 62, 1478–1480. [Google Scholar]
221.
Akampumuza O, Wambua PM, Ahmed A, Li W, Qin XH. Review of the Applications of Biocomposites in the Automotive Industry.  Polym. Compos. 2017, 38, 2553–2569. [Google Scholar]
222.
Li M, Pu Y, Thomas VM, Yoo CG, Ozcan S, Deng Y, et al. Recent Advancements of Plant-Based Natural Fiber–Reinforced Composites and Their Applications.  Compos. Part B Eng. 2020, 200, 108254. [Google Scholar]
223.
Sathyaraj S, Dhas JER, Balakrishnan HK. Recent Developments of Fiber-Reinforced Polymer Composites in Automotive. In Fiber-Reinforced Polymer: Processes and Applications; Nova Science Publishers: Hauppauge, NY, USA, 2021.
224.
Awwad EA, Hamad B, Mabsout M, Khatib H. Sustainable Concrete Using Hemp Fibres.  Proc. Inst. Civil Eng. Construct. Mater. 2013, 166, 45–53. [Google Scholar]
225.
Sáez-Pérez MP, Durán-Suárez JA, Castro-Gomes J. Improving the Behaviour of Green Concrete Geopolymers Using Different HEMP Preservation Conditions (Fresh and Wet).  Minerals 2022, 12, 1530. [Google Scholar]
226.
Versino F, López OV, García MA. Green Biocomposites for Packaging Applications. In Biocomposite Materials. Composites Science and Technology; Springer, Singapore, 2021.
227.
Farias NC, Major I, Devine D, Brennan Fournet M, Pezzoli R, Farshbaf Taghinezhad S, et al. Multiple Recycling of a PLA/PHB Biopolymer Blend for Sustainable Packaging Applications: Rheology-Morphology, Thermal, and Mechanical Performance Analysis.  Polym. Eng. Sci. 2022, 62, 25962. [Google Scholar]
228.
Koronis G, Silva A, Fontul M. Green Composites: A Review of Adequate Materials for Automotive Applications.  Compos. Part B Eng. 2013, 44, 120–127. [Google Scholar]
229.
Ashori A. Wood-Plastic Composites as Promising Green-Composites for Automotive Industries!  Bioresour. Technol. 2008, 99, 4661–4667. [Google Scholar]
230.
Mohanty AK, Misra M, Drzal LT. Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World.  J. Polym. Environ. 2002, 10, 19–26. [Google Scholar]
231.
Fan J, Nassiopoulos E, Brighton J, De Larminat A, Njuguna J. New Structural Biocomposites for Car Applications. In Proceedings of the Society of Plastics Engineers-EUROTEC 2011 Conference Proceedings, Barcelona, Spain, 14–15 November 2011.
232.
Naseri N, Algan C, Jacobs V, John M, Oksman K, Mathew AP. Electrospun Chitosan-Based Nanocomposite Mats Reinforced with Chitin Nanocrystals for Wound Dressing.  Carbohydr. Polym. 2014, 109, 7–15. [Google Scholar]
233.
Nagarwal RC, Singh PN, Kant S, Maiti P, Pandit JK. Chitosan Coated PLA Nanoparticles for Ophthalmic Delivery: Characterization, in-Vitro and in-Vivo Study in Rabbit Eye.  J. Biomed. Nanotechnol. 2010, 6, 648–657. [Google Scholar]
234.
Luzi F, Puglia D, Torre L. Natural Fiber Biodegradable Composites and Nanocomposites: A Biomedical Application. In Biomass, Biopolymer-Based Materials, and Bioenergy: Construction, Biomedical, and other Industrial Applications; Woodhead Publishing: Sawston, UK, 2019.
235.
Erturk PA, Altuntas S, Irmak G, Buyukserin F. Bioinspired Collagen/GelatinNanopillared Films as a Potential Implant Coating Material.  ACS Appl. Bio Mater. 2022, 5, 4913–4921. [Google Scholar]
236.
Javadian A, Smith IFC, Hebel DE. Application of Sustainable Bamboo-Based Composite Reinforcement in Structural-Concrete Beams: Design and Evaluation.  Materials 2020, 13, 696. [Google Scholar]
237.
Asgher M, Qamar SA, Bilal M, Iqbal HMN. Bio-Based Active Food Packaging Materials: Sustainable Alternative to Conventional Petrochemical-Based Packaging Materials.  Food Res. Int. 2020, 137, 109625. [Google Scholar]
238.
Dabrowska A. Plant-Oil-Based Fibre Composites for Boat Hulls.  Materials 2022, 15, 1699. [Google Scholar]
239.
Mydin AO, Majeed SS, Omar R, Awoyera PO, Najm HM. Sustainable Lightweight Foamed Concrete Using Hemp Fibre for Mechanical Properties Improvement.  J. Adv. Res. Appl. Mech. 2023, 101, 19–35. [Google Scholar]
240.
Avella M, Buzarovska A, Errico ME, Gentile G, Grozdanov A. Eco-Challenges of Bio-Based Polymer Composites.  Materials 2009, 2, 911. [Google Scholar]
241.
Al-Oqla FM, Almagableh A, Omari MA. Design and Fabrication of Green Biocomposites. In Green Energy and Technology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 45–67.
242.
Akter M, Uddin MH, Tania IS. Biocomposites Based on Natural Fibers and Polymers: A Review on Properties and Potential Applications.  J. Reinf. Plas. Compos. 2022, 41, 705–742. [Google Scholar]
243.
Yatigala NS, Bajwa DS, Bajwa SG. Compatibilization Improves Physico-Mechanical Properties of Biodegradable Biobased Polymer Composites.  Compos. Part A Appl. Sci. Manuf. 2018, 107, 315–325. [Google Scholar]
244.
Rajan VS, Govindaraju M, Ramu M, Satheeshkumar V. Influence of Metal Foam Properties on Performance of Polymer Composite Spur Gear.  Mater. Today Proc. 2020, 24, 1244–1250. [Google Scholar]
Creative Commons

© 2024 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (https://creativecommons.org/licenses/by/4.0/).