Review Open Access

Creating Shape Memory Polymers from Biobased Resources

Sustainable Polymer & Energy. 2023, 1(2), 10009; https://doi.org/10.35534/spe.2023.10009
Kun Luo    Zhi-Yuan Xu    Rui Zhan    Ke-Ke Yang *   
The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
*
Authors to whom correspondence should be addressed.

Received: 16 Apr 2023    Accepted: 17 Jul 2023    Published: 24 Jul 2023   

Abstract

Developing polymer materials from biomass is a promising pathway to address serious environmental and resource issues. To date, a series of biobased general polymer materials have been successfully industrialized. However, exploring highly valuable functional polymers and intelligent polymer materials from biomass, such as shape memory polymers (SMPs) and self-healing materials, is still a great challenge. The present review intends to bridge a sustainable pathway for the creation of SMPs from biobased resources. Thus, we first recall some backgrounds of the design principle of SMPs and highlight the biobased monomers or building blocks for SMPs, and then we focus on the main varieties of biobased SMPs to clarify their fabricating approaches, functionalizing strategies, new manufacturing methods and the application potential.

References

1.
Lucherelli MA, Duval A, Averous L. Biobased vitrimers: Towards sustainable and adaptable performing polymer materials.  Prog. Polym. Sci. 2022, 127, 101515. [Google Scholar]
2.
Mou Z, Chen EYX. Polyesters and Poly(ester-urethane)s from Biobased Difuranic Polyols.  ACS Sustain. Chem. Eng. 2016, 4, 7118–7129. [Google Scholar]
3.
Chen Q, Du J-h, Xie H-b, Zhao Z-b, Zheng Q. Studies on Preparation and Properties of Bio-based Polymeric Monomers and Their Bio-based Polymers. Acta Polym. Sin. 2016, 1330–1358. doi:10.11777/j.issn1000-3304.2016.16154.
4.
Valerio O, Misra M, Mohanty AK. Poly(glycerol-co-diacids) Polyesters: From Glycerol Biorefinery to Sustainable Engineering Applications, A Review.  ACS Sustain. Chem. Eng. 2018, 6, 5681–5693. [Google Scholar]
5.
Taroncher-Oldenburg G, Marshall A. Trends in biotech literature 2006.  Nat. Biotechnol. 2007, 25, 961. [Google Scholar]
6.
Cantarutti C, Dinu R, Mija A. Polyhydroxybutyrate Bioresins with High Thermal Stability by Cross-linking with Resorcinol Diglycidyl Ether.  Biomacromolecules 2020, 21, 3447–3458. [Google Scholar]
7.
Dhers S, Vantomme G, Averous L. A fully bio-based polyimine vitrimer derived from fructose. Green Chem. 2019, 21, 1596–1601. [Google Scholar]
8.
Fei M, Liu T, Zhao B, Otero A, Chang Y-C, Zhang J. From Glassy Plastic to Ductile Elastomer: Vegetable Oil-Based UV-Curable Vitrimers and Their Potential Use in 3D Printing.  ACS Appl. Polym. Mater. 2021, 3, 2470–2479. [Google Scholar]
9.
Jia P, Shi Y, Song F, Bei Y, Huang C, Zhang M, et al. Bio-based and degradable vitrimer-graphene/graphene oxide composites with self-healing ability stimulated by heat, electricity and microwave as temperature and fire warning sensors.  Compos. Sci. Technol. 2022, 227, 109573. [Google Scholar]
10.
Li W, Xiao L, Huang J, Wang Y, Nie X, Chen J. Bio-based epoxy vitrimer for recyclable and carbon fiber reinforced materials: Synthesis and structure-property relationship.  Compos. Sci. Technol. 2022, 227, 109575. [Google Scholar]
11.
Liu T, Fei M-e, Zhao B-m, Zhang J-w. Progress in Biobased Vitrimers.  Acta Polym. Sin. 2020, 51, 817–832. [Google Scholar]
12.
Zhu Y, Gao F, Zhong J, Shen L, Lin Y. Renewable castor oil and DL-limonene derived fully bio-based vinylogous urethane vitrimers.  Eur. Polym. J. 2020, 135, 109865. [Google Scholar]
13.
Altuna FI, Antonacci J, Arenas GF, Pettarin V, Hoppe CE, Williams RJJ. Photothermal triggering of self-healing processes applied to the reparation of bio-based polymer networks.  Mater. Res. Express 2016, 3, 045003. [Google Scholar]
14.
Gu L, Wu Q-Y. Recyclable bio-based crosslinked polyurethanes with self-healing ability.  J. Appl. Polym. Sci. 2018, 135, 46272. [Google Scholar]
15.
Huang J, Zhang J, Zhu G, Yu X, Hu Y, Shang Q, et al. Self-healing, high-performance, and high-biobased-content UV-curable coatings derived from rubber seed oil and itaconic acid.  Prog. Org. Coat. 2021, 159, 106391. [Google Scholar]
16.
Hui Y, Wen Z-B, Pilate F, Xie H, Fan C-J, Du L, et al. A facile strategy to fabricate highly-stretchable self-healing poly(vinyl alcohol) hybrid hydrogels based on metal-ligand interactions and hydrogen bonding.  Polym. Chem. 2016, 7, 7269–7277. [Google Scholar]
17.
Lai S-M, Liu J-L, Huang Y-H. Preparation of Self-healing Natural Rubber/Polycaprolactone (NR/PCL) Blends.  J. Macromol. Sci. Part B-Phys. 2020, 59, 587–607. [Google Scholar]
18.
Li W, Xiao L, Wang Y, Chen J, Nie X. Self-healing silicon-containing eugenol-based epoxy resin based on disulfide bond exchange: Synthesis and structure-property relationships.  Polymer 2021, 229, 123967. [Google Scholar]
19.
Yang Y, Urban MW. Self-healing polymeric materials.  Chem. Soc. Rev. 2013, 42, 7446–7467. [Google Scholar]
20.
Zhang J, Huang J, Zhu G, Yu X, Cheng J, Liu Z, et al. Self-healing, recyclable, and removable UV-curable coatings derived from tung oil and malic acid.  Green Chem. 2021, 23, 5875–5886. [Google Scholar]
21.
Zhu M, Liu J, Gan L, Long M. Research progress in bio-based self-healing materials.  Eur. Polym. J. 2020, 129, 109651. [Google Scholar]
22.
Ali ES, Khiar ASA, Zubir SA, Zulkeple ZAZ. Electrical conductivity of biobased shape memory polyurethane filled with CNT.  Mater. Sci. Forum 2017, 880, 69–72. [Google Scholar]
23.
Capiel G, Marcovich NE, Mosiewicki MA. Shape memory polymer networks based on methacrylated fatty acids.  Eur. Polym. J. 2019, 116, 321–329. [Google Scholar]
24.
Feng Y, Hu Y, Man L, Yuan T, Zhang C, Yang Z.  Biobased thiol-epoxy shape memory networks from gallic acid and vegetable oils.  Eur. Polym. J. 2019, 112, 619–628. [Google Scholar]
25.
Petrovic ZS, Milic J, Zhang F, Ilavsky J. Fast-responding bio-based shape memory thermoplastic polyurethanes.  Polymer 2017, 121, 26–37. [Google Scholar]
26.
Saralegi A, Foster EJ, Weder C, Eceiza A, Angeles Corcuera M. Thermoplastic shape-memory polyurethanes based on natural oils.  Smart Mater. Struct. 2014, 23, 025033. [Google Scholar]
27.
Tsujimoto T, Uyama H. Full Biobased Polymeric Material from Plant Oil and Poly(lactic acid) with a Shape Memory Property.  ACS Sustain. Chem. Eng. 2014, 2, 2057–2062. [Google Scholar]
28.
Tsujimoto T, Takeshita K, Uyama H. Bio-based Epoxy Resins from Epoxidized Plant Oils and Their Shape Memory Behaviors.  J. Am. Oil Chem. Soc. 2016, 93, 1663–1669. [Google Scholar]
29.
Vechambre C, Chaunier L, Lourdin D. Novel Shape-Memory Materials Based on Potato Starch.  Macromol. Mater. Eng. 2010, 295, 115–122. [Google Scholar]
30.
Wang G, Jiang M, Zhang Q, Wang R, Zhou G. Biobased multiblock copolymers: Synthesis, properties and shape memory performance of poly(ethylene 2,5-furandicarboxylate)-b-ly(ethylene glycol).  Polym. Degrad. Stab. 2017, 144, 121–127. [Google Scholar]
31.
Calvo-Correas T, Gabilondo N, Alonso-Varona A, Palomares T, Angeles Corcuera M, Eceiza A. Shape-memory properties of crosslinked biobased polyurethanes. Eur. Polym. J. 2016, 78, 253–263. [Google Scholar]
32.
Behl M, Lendlein A. Shape-memory polymers.  Mater. Today 2007, 10, 20–28. [Google Scholar]
33.
Liu C, Qin H, Mather PT. Review of progress in shape-memory polymers.  J. Mater. Chem. 2007, 17, 1543–1558. [Google Scholar]
34.
Huang WM, Yang B, Zhao Y, Ding Z. Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review.  J. Mater. Chem. 2010, 20, 3367–3381. [Google Scholar]
35.
Wu Y, Lin Y, Zhou Y, Zuo F, Zheng Z, Ding X. Light-Induced Shape Memory Polymer Materials.  Progr. Chem. 2012, 24, 2004–2010. [Google Scholar]
36.
Zhao Q, Qi HJ, Xie T.  Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding.  Prog. Polym. Sci. 2015, 49, 79–120. [Google Scholar]
37.
Biswas MC, Chakraborty S, Bhattacharjee A, Mohammed Z. 4D Printing of Shape Memory Materials for Textiles: Mechanism, Mathematical Modeling, and Challenges.  Adv. Funct. Mater. 2021, 31, 202100257. [Google Scholar]
38.
Safranski DL, Smith KE, Gall K. Mechanical Requirements of Shape-Memory Polymers in Biomedical Devices.  Polym. Rev. 2013, 53, 76–91. [Google Scholar]
39.
Lendlein A, Behl M, Hiebl B, Wischke C. Shape-memory polymers as a technology platform for biomedical applications.  Expert Rev. Med. Devices 2010, 7, 357–379. [Google Scholar]
40.
Liu Y, Du H, Liu L, Leng J. Shape memory polymers and their composites in aerospace applications: a review.  Smart Mater. Struct. 2014, 23, 023001. [Google Scholar]
41.
Rainer WC, Redding EM, Hitov JJ, Sloan AW, Stewart WD. Polyethylene Product and Process. US Patent 3144398, 1964.
42.
Huang C-L, Jiao L, Zhang J-J, Zeng J-B, Yang K-K, Wang Y-Z. Poly(butylene succinate)-poly(ethylene glycol) multiblock copolymer: Synthesis, structure, properties and shape memory performance.  Polym. Chem. 2012, 3, 800–808. [Google Scholar]
43.
Li W, Liu Y, Leng J. Programmable and Shape-Memorizing Information Carriers.  ACS Appl. Mater. Interfaces 2017, 9, 44792–44798. [Google Scholar]
44.
Xiao L, Wei M, Zhan M, Zhang J, Xie H, Deng X, et al. Novel triple-shape PCU/PPDO interpenetrating polymer networks constructed by self-complementary quadruple hydrogen bonding and covalent bonding.  Polym. Chem. 2014, 5, 2231–2241. [Google Scholar]
45.
Agarwal P, Chopra M, Archer LA. Nanoparticle Netpoints for Shape-Memory Polymers.  Angew. Chem.-Intl. Edit. 2011, 50, 8670–8673. [Google Scholar]
46.
Zheng X, Zhou S, Li X, Weng H. Shape memory properties of poly(D,L-lactide)/hydroxyapatite composites.  Biomaterials 2006, 27, 4288–4295. [Google Scholar]
47.
Wang L, Zhang F, Liu Y, Du S, Leng J. Photosensitive Composite Inks for Digital Light Processing Four-Dimensional Printing of Shape Memory Capture Devices.  ACS Appl. Mater. Interfaces 2021, 13, 18110–18119. [Google Scholar]
48.
Mei H, Zhao B, Gao Y, Li L, Liu L, Zheng S. Block Copolymer Networks Composed of Poly(epsilon-caprolactone) and Polyethylene with Triple Shape Memory Properties.  Chin. J. Polym. Sci. 2022, 40, 185–196. [Google Scholar]
49.
Yang C-S, Wu H-C, Sun J-S, Hsiao H-M, Wang T-W. Thermo-Induced Shape-Memory PEG-PCL Copolymer as a Dual Drug-Eluting Biodegradable Stent.  ACS Appl. Mater. Interfaces 2013, 5, 10985–10994. [Google Scholar]
50.
Wen Z-B, Liu D, Li X-Y, Zhu C-H, Shao R-F, Visvanathan R, et al. Fabrication of Liquid Crystalline Polyurethane Networks with a Pendant Azobenzene Group to Access Thermal/Photoresponsive Shape-Memory Effects.  ACS Appl. Mater. Interfaces 2017, 9, 24947–24954. [Google Scholar]
51.
Jiang Z-C, Xiao Y-Y, Kang Y, Pan M, Li B-J, Zhang S. Shape Memory Polymers Based on Supramolecular Interactions.  ACS Appl. Mater. Interfaces 2017, 9, 20276–20293. [Google Scholar]
52.
Chen S, Hu J, Yuen C, Chan L. Novel moisture-sensitive shape memory polyurethanes containing pyridine moieties.  Polymer 2009, 50, 4424–4428. [Google Scholar]
53.
Kumpfer JR, Rowan SJ. Thermo-, Photo-, and Chemo-Responsive Shape-Memory Properties from Photo-Cross-Linked Metallo-Supramolecular Polymers.  J. Am. Chem. Soc. 2011, 133, 12866–12874. [Google Scholar]
54.
Dong Z-Q, Cao Y, Yuan Q-J, Wang Y-F, Li J-H, Li B-J, et al. Redox- and Glucose-Induced Shape-Memory Polymers.  Macromol. Rapid Commun. 2013, 34, 867–872. [Google Scholar]
55.
Kratz K, Madbouly SA, Wagermaier W, Lendlein A. Temperature-Memory Polymer Networks with Crystallizable Controlling Units. Adv. Mater. 2011, 23, 4058–4062. [Google Scholar]
56.
Xie H, Li L, Deng X-Y, Cheng C-Y, Yang K-K, Wang Y-Z. Reinforcement of shape-memory poly(ethylene-co-vinyl acetate) by carbon fibre to access robust recovery capability under resistant condition.  Compos. Sci. Technol. 2018, 157, 202–208. [Google Scholar]
57.
Xie H, Li L, Cheng C-Y, Yang K-K, Wang Y-Z. Poly(ethylene-co-vinyl acetate)/graphene shape-memory actuator with a cyclic thermal/light dual-sensitive capacity.  Compos. Sci. Technol. 2019, 173, 41–46. [Google Scholar]
58.
Wei M, Zhan M, Yu D, Xie H, He M, Yang K, et al. Novel Poly(tetramethylene ether)glycol and Poly(epsilon-caprolactone) Based Dynamic Network via Quadruple Hydrogen Bonding with Triple-Shape Effect and Self-Healing Capacity.  ACS Appl. Mater. Interfaces 2015, 7, 2585–2596. [Google Scholar]
59.
Zhang J, Niu Y, Huang C, Xiao L, Chen Z, Yang K, et al. Self-healable and recyclable triple-shape PPDO-PTMEG co-network constructed through thermoreversible Diels-Alder reaction.  Polym. Chem. 2012, 3, 1390–1393. [Google Scholar]
60.
Xie H, He M-J, Deng X-Y, Du L, Fan C-J, Yang K-K, et al. Design of Poly(L-lactide)-Poly(ethylene glycol) Copolymer with Light-Induced Shape-Memory Effect Triggered by Pendant Anthracene Groups.  ACS Appl. Mater. Interfaces 2016, 8, 9431–9439. [Google Scholar]
61.
Xie H, Cheng C-Y, Deng X-Y, Fan C-J, Du L, Yang K-K, et al. Creating Poly(tetramethylene oxide) Glycol-Based Networks with Tunable Two-Way Shape Memory Effects via Temperature-Switched Netpoints.  Macromolecules 2017, 50, 5155–5164. [Google Scholar]
62.
Miaudet P, Derre A, Maugey M, Zakri C, Piccione PM, Inoubli R, et al. Shape and temperature memory of nanocomposites with broadened glass transition.  Science 2007, 318, 1294–1296. [Google Scholar]
63.
Xie H, Cheng C-Y, Du L, Fan C-J, Deng X-Y, Yang K-K, et al. A Facile Strategy To Construct PDLLA-PTMEG Network with Triple-Shape Effect via Photo-Cross-Linking of Anthracene Groups.  Macromolecules 2016, 49, 3845–3855. [Google Scholar]
64.
Xiao LP, Wei M, Zhan MQ, Zhang JJ, Xie H, Deng XY, et al. Novel triple-shape PCU/PPDO interpenetrating polymer networks constructed by self-complementary quadruple hydrogen bonding and covalent bonding.  Polym. Chem. 2014, 5, 2231–2241. [Google Scholar]
65.
Xie T. Tunable polymer multi-shape memory effect.  Nature 2010, 464, 267–270. [Google Scholar]
66.
Li J, Liu T, Xia S, Pan Y, Zheng ZH, Ding XB, et al. A versatile approach to achieve quintuple-shape memory effect by semi-interpenetrating polymer networks containing broadened glass transition and crystalline segments.  J. Mater. Chem. 2011, 21, 12213–12217. [Google Scholar]
67.
Luo Y, Guo Y, Gao X, Li B-G, Xie T. A General Approach Towards Thermoplastic Multishape-Memory Polymers via Sequence Structure Design.  Adv. Mater. 2013, 25, 743–748. [Google Scholar]
68.
Xie H, Yang K-K, Wang Y-Z. Photo-cross-linking: A powerful and versatile strategy to develop shape-memory polymers.  Prog. Polym. Sci. 2019, 95, 32–64. [Google Scholar]
69.
Lendlein A, Jiang HY, Junger O, Langer R. Light-induced shape-memory polymers.  Nature 2005, 434, 879–882. [Google Scholar]
70.
Liu Y, Lv H, Lan X, Leng J, Du S. Review of electro-active shape-memory polymer composite.  Compos. Sci. Technol. 2009, 69, 2064–2068. [Google Scholar]
71.
Qi X, Xiu H, Wei Y, Zhou Y, Guo Y, Huang R, et al. Enhanced shape memory property of polylactide/thermoplastic poly(ether)urethane composites via carbon black self-networking induced co-continuous structure.  Compos. Sci. Technol. 2017, 139, 8–16. [Google Scholar]
72.
Razzaq MY, Behl M, Noechel U, Lendlein A. Magnetically controlled shape-memory effects of hybrid nanocomposites from oligo(omega-pentadecalactone) and covalently integrated magnetite nanoparticles.  Polymer 2014, 55, 5953–5960. [Google Scholar]
73.
Zhang F, Wang L, Zheng Z, Liu Y, Leng J. Magnetic programming of 4D printed shape memory composite structures.  Compos. Part A-Appl. Sci. Manuf. 2019, 125, 105571. [Google Scholar]
74.
Du L, Xu Z, Fan C-J, Xiang G, Yang K-K, Wang Y-Z. A Fascinating Metallo-Supramolecular Polymer Network with Thermal/Magnetic/Light-Responsive Shape-Memory Effects Anchored by Fe3O4 Nanoparticles.  Macromolecules 2018, 51, 705–715. [Google Scholar]
75.
Zhang H, Xia H, Zhao Y. Optically triggered and spatially controllable shape-memory polymer-gold nanoparticle composite materials.  J. Mater. Chem. 2012, 22, 845–849. [Google Scholar]
76.
Zhang H, Zhao Y. Polymers with Dual Light-Triggered Functions of Shape Memory and Healing Using Gold Nanoparticles.  ACS Appl. Mater. Interfaces 2013, 5, 13069–13075. [Google Scholar]
77.
Yang Z, Wang Q, Wang T. Dual-Triggered and Thermally Reconfigurable Shape Memory Graphene-Vitrimer Composites. ACS Appl. Mater. Interfaces 2016, 8, 21691–21699. [Google Scholar]
78.
Xie H, Cheng C-Y, Li L, Deng X-Y, Yang K-K, Wang Y-Z. Integrating shape-memory technology and photo-imaging on a polymer platform for a high-security information storage medium.  J. Mater. Chem. C 2018, 6, 10422–10427. [Google Scholar]
79.
Zhang X, Zhu C, Xu B, Qin L, Wei J, Yu Y. Rapid, Localized, and Athermal Shape Memory Performance Triggered by Photoswitchable Glass Transition Temperature.  ACS Appl. Mater. Interfaces 2019, 11, 46212–46218. [Google Scholar]
80.
Lu X, Guo S, Tong X, Xia H, Zhao Y. Tunable Photocontrolled Motions Using Stored Strain Energy in Malleable Azobenzene Liquid Crystalline Polymer Actuators.  Adv. Mater. 2017, 29, 1606467. [Google Scholar]
81.
Qi X, Jing M, Liu Z, Dong P, Liu T, Fu Q. Microfibrillated cellulose reinforced bio-based poly(propylene carbonate) with dual-responsive shape memory properties.  RSC Adv. 2016, 6, 7560–7567. [Google Scholar]
82.
Maraveas C, Bayer IS, Bartzanas T. 4D printing: Perspectives for the production of sustainable plastics for agriculture.  Biotechnol. Adv. 2022, 54, 107785. [Google Scholar]
83.
Liu Y, Li Y, Chen H, Yang G, Zheng X, Zhou S. Water-induced shape-memory poly(D,L-lactide)/microcrystalline cellulose composites.  Carbohydr. Polym. 2014, 104, 101–108. [Google Scholar]
84.
Wang C, Wang H, Zou F, Chen S, Wang Y. Development of Polyhydroxyalkanoate-Based Polyurethane with Water-Thermal Response Shape-Memory Behavior as New 3D Elastomers Scaffolds.  Polymers 2019, 11, 1030. [Google Scholar]
85.
Huang WM, Yang B, An L, Li C, Chan YS. Water-driven programmable polyurethane shape memory polymer: Demonstration and mechanism.  Appl. Phys. Lett. 2005, 86, 1880448. [Google Scholar]
86.
Li Y, Chen H, Liu D, Wang W, Liu Y, Zhou S. pH-Responsive Shape Memory Poly(ethylene glycol)-Poly(epsilon-caprolactone)-based Polyurethane/Cellulose Nanocrystals Nanocomposite.  ACS Appl. Mater. Interfaces 2015, 7, 12988–12999. [Google Scholar]
87.
Han X-J, Dong Z-Q, Fan M-M, Liu Y, Li J-H, Wang Y-F, et al. pH-Induced Shape-Memory Polymers.  Macromol. Rapid Commun. 2012, 33, 1055–1060. [Google Scholar]
88.
Dodds DR, Gross RA. Chemicals from biomass.  Science 2007, 318, 1250–1251. [Google Scholar]
89.
Werpy T, Petersen G. Top Value Added Chemicals from Biomass: Volume i-results of Screening for Potential Candidates from Sugars and Synthesis Gas; Technical Report; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2004
90.
Jiang Y, Loos K. Enzymatic Synthesis of Biobased Polyesters and Polyamides.  Polymers 2016, 8, 243. [Google Scholar]
91.
Verma M, Mandyal P, Singh D, Gupta N. Recent Developments in Heterogeneous Catalytic Routes for the Sustainable Production of Succinic Acid from Biomass Resources.  ChemSusChem 2020, 13, 4026–4034. [Google Scholar]
92.
Short GN, Nguyen HTH, Scheurle PI, Miller SA. Aromatic polyesters from biosuccinic acid.  Polym. Chem. 2018, 9, 4113–4119. [Google Scholar]
93.
Tachibana Y, Masuda T, Funabashi M, Kunioka M. Chemical Synthesis of Fully Biomass-Based Poly(butylene succinate) from Inedible-Biomass-Based Furfural and Evaluation of Its Biomass Carbon Ratio.  Biomacromolecules 2010, 11, 2760–2765. [Google Scholar]
94.
De Carvalho JC, Magalhaes AI Jr, Soccol CR. Biobased itaconic acid market and research trends - is it really a promising chemical?  Chim. Oggi-Chem. Today 2018, 36, 56–58. [Google Scholar]
95.
Mondala AH. Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: current and future prospects.  J. Ind. Microbiol. Biotechnol. 2015, 42, 487–506. [Google Scholar]
96.
Kumar S, Krishnan S, Samal SK, Mohanty S, Nayak SK. Itaconic acid used as a versatile building block for the synthesis of renewable resource-based resins and polyesters for future prospective: a review.  Polym. Int. 2017, 66, 1349–1363. [Google Scholar]
97.
Mika LT, Csefalvay E, Nemeth A. Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability.  Chem. Rev. 2018, 118, 505–613. [Google Scholar]
98.
Gupta AP, Kumar V. New emerging trends in synthetic biodegradable polymers - Polylactide: A critique.  Eur. Polym. J. 2007, 43, 4053–4074. [Google Scholar]
99.
Chen G-Q. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry.  Chem. Soc. Rev. 2009, 38, 2434–2446. [Google Scholar]
100.
Chen G-Q, Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials.  Biomaterials 2005, 26, 6565–6578. [Google Scholar]
101.
Chen G-Q, Patel MK. Plastics Derived from Biological Sources: Present and Future: A Technical and Environmental Review.  Chem. Rev. 2012, 112, 2082–2099. [Google Scholar]
102.
Matsumoto Ki, Taguchi S. Biosynthetic polyesters consisting of 2-hydroxyalkanoic acids: current challenges and unresolved questions.  Appl. Microbiol. Biotechnol. 2013, 97, 8011–8021. [Google Scholar]
103.
Philip S, Keshavarz T, Roy I. Polyhydroxyalkanoates: biodegradable polymers with a range of applications.  J. Chem. Technol. Biotechnol. 2007, 82, 233–247. [Google Scholar]
104.
Li Y, Wang L, Ju J, Yu B, Ma Y. Efficient production of polymer-grade D-lactate by Sporolactobacillus laevolacticus DSM442 with agricultural waste cottonseed as the sole nitrogen source.  Bioresour. Technol. 2013, 142, 186–191. [Google Scholar]
105.
Cubas-Cano E, Gonzalez-Fernandez C, Ballesteros M, Tomas-Pejo E. Biotechnological advances in lactic acid production by lactic acid bacteria: lignocellulose as novel substrate.  Biofuels Bioprod. Biorefin. 2018, 12, 290–303. [Google Scholar]
106.
Ajala EO, Olonade YO, Ajala MA, Akinpelu GS. Lactic Acid Production from Lignocellulose - A Review of Major Challenges and Selected Solutions.  Chembioeng. Rev. 2020, 7, 38–49. [Google Scholar]
107.
Datta R, Henry M. Lactic acid: recent advances in products, processes and technologies - a review.  J. Chem. Technol. Biotechnol. 2006, 81, 1119–1129. [Google Scholar]
108.
Nampoothiri KM, Nair NR, John RP. An overview of the recent developments in polylactide (PLA) research.  Bioresour. Technol. 2010, 101, 8493–8501. [Google Scholar]
109.
Lei L, Ding T, Shi R, Liu Q, Zhang L, Chen D, et al. Synthesis, characterization and in vitro degradation of a novel degradable poly((1,2-propanediol-sebacate)-citrate) bioelastomer.  Polym. Degrad. Stab. 2007, 92, 389–396. [Google Scholar]
110.
Sousa AF, Vilela C, Fonseca AC, Matos M, Freire CSR, Gruter G-JM, et al. Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency.  Polym. Chem. 2015, 6, 5961–5983. [Google Scholar]
111.
Woodruff MA, Hutmacher DW. The return of a forgotten polymer-Polycaprolactone in the 21st century.  Prog. Polym. Sci. 2010, 35, 1217–1256. [Google Scholar]
112.
Hu X, Li Y, Gao Y, Wang R, Wang Z, Kang H, et al. Renewable and super-toughened poly (butylene succinate) with bio-based elastomers: Preparation, compatibility and performances.  Eur. Polym. J. 2019, 116, 438–444. [Google Scholar]
113.
Guo H, Liu H, Jin Y, Zhang R, Yu Y, Deng L, et al. Advances in research on the bio-production of 1,4-butanediol by the engineered microbes.  Biochem. Eng. J. 2022, 185, 108478. [Google Scholar]
114.
Wang J, Jain R, Shen X, Sun X, Cheng M, Liao JC, et al. Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose.  Metab. Eng. 2017, 40, 148–156. [Google Scholar]
115.
Gandini A. Furans as offspring of sugars and polysaccharides and progenitors of a family of remarkable polymers: a review of recent progress.  Polym. Chem. 2010, 1, 245–251. [Google Scholar]
116.
Klein R, Wurm FR. Aliphatic Polyethers: Classical Polymers for the 21st Century.  Macromol. Rapid Commun. 2015, 36, 1147–1165. [Google Scholar]
117.
Amarasekara AS, Singh TB, Larkin E, Hasan MA, Fan H-J. NaOH catalyzed condensation reactions between levulinic acid and biomass derived furan-aldehydes in water. Ind. Crops Prod. 2015, 65, 546–549. [Google Scholar]
118.
Zhang D, Dumont M-J. Advances in Polymer Precursors and Bio-Based Polymers Synthesized from 5-Hydroxymethylfurfural.  J. Polym. Sci. Pol. Chem. 2017, 55, 1478–1492. [Google Scholar]
119.
Delidovich I, Hausoul PJC, Deng L, Pfuetzenreuter R, Rose M, Palkovits R. Alternative Monomers Based on Lignocellulose and Their Use for Polymer Production.  Chem. Rev. 2016, 116, 1540–1599. [Google Scholar]
120.
van Putten R-J, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG. Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources.  Chem. Rev. 2013, 113, 1499–1597. [Google Scholar]
121.
Cantarutti C, Dinu R, Mija A. Biorefinery Byproducts and Epoxy Biorenewable Monomers: A Structural Elucidation of Humins and Triglycidyl Ether of Phloroglucinol Cross-Linking.  Biomacromolecules 2020, 21, 517–533. [Google Scholar]
122.
Jiang Y, Woortman AJJ, van Ekenstein GORA, Petrovic DM, Loos K. Enzymatic Synthesis of Biobased Polyesters Using 2,5-Bis(hydroxymethyl)furan as the Building Block.  Biomacromolecules 2014, 15, 2482–2493. [Google Scholar]
123.
Cureton LT, Napadensky E, Annunziato C, La Scala JJ. The effect of furan molecular units on the glass transition and thermal degradation temperatures of polyamides.  J. Appl. Polym. Sci. 2017, 134, 45514. [Google Scholar]
124.
Dijkman WP, Groothuis DE, Fraaije MW. Enzyme-Catalyzed Oxidation of 5-Hydroxymethylfurfural to Furan-2,5-dicarboxylic Acid.  Angew. Chem.-Intl. Edit. 2014, 53, 6515–6518. [Google Scholar]
125.
Balachandran VS, Jadhav SR, Vemula PK, John G. Recent advances in cardanol chemistry in a nutshell: from a nut to nanomaterials.  Chem. Soc. Rev. 2013, 42, 427–438. [Google Scholar]
126.
Aouf C, Nouailhas H, Fache M, Caillol S, Boutevin B, Fulcrand H. Multi-functionalization of gallic acid. Synthesis of a novel bio-based epoxy resin.  Eur. Polym. J. 2013, 49, 1185–1195. [Google Scholar]
127.
Priefert H, Rabenhorst J, Steinbuchel A. Biotechnological production of vanillin. Appl. Microbiol. Biotechnol. 2001, 56, 296–314. [Google Scholar]
128.
Dinu R, Lafont U, Damiano O, Mija A. High Glass Transition Materials from Sustainable Epoxy Resins with Potential Applications in the Aerospace and Space Sectors.  ACS Appl. Polym. Mater. 2022, 4, 3636–3646. [Google Scholar]
129.
Zhang Q, Song M, Xu Y, Wang W, Wang Z, Zhang L. Bio-based polyesters: Recent progress and future prospects.  Prog. Polym. Sci. 2021, 120, 101430. [Google Scholar]
130.
Fache M, Boutevin B, Caillol S. Epoxy thermosets from model mixtures of the lignin-to-vanillin process.  Green Chem. 2016, 18, 712–725. [Google Scholar]
131.
Amarasekara AS, Wiredu B, Razzaq A. Vanillin based polymers: I. An electrochemical route to polyvanillin.  Green Chem. 2012, 14, 2395–2397. [Google Scholar]
132.
Fache M, Viola A, Auvergne R, Boutevin B, Caillol S. Biobased epoxy thermosets from vanillin-derived oligomers.  Eur. Polym. J. 2015, 68, 526–535. [Google Scholar]
133.
Mialon L, Pemba AG, Miller SA. Biorenewable polyethylene terephthalate mimics derived from lignin and acetic acid. Green Chem. 2010, 12, 1704–1706. [Google Scholar]
134.
Firdaus M, Meier MAR. Renewable co-polymers derived from vanillin and fatty acid derivatives.  Eur. Polym. J. 2013, 49, 156–166. [Google Scholar]
135.
Islam MR, Beg MDH, Jamari SS. Development of Vegetable-Oil-Based Polymers.  J. Appl. Polym. Sci. 2014, 131, 40787. [Google Scholar]
136.
Tran TN, Di Mauro C, Graillot A, Mija A. Monitoring the structure-reactivity relationship in epoxidized perilla and safflower oil thermosetting resins.  Polym. Chem. 2020, 11, 5088–5097. [Google Scholar]
137.
Di Mauro C, Mija A. Influence of the Presence of Disulphide Bonds in Aromatic or Aliphatic Dicarboxylic Acid Hardeners Used to Produce Reprocessable Epoxidized Thermosets.  Polymers 2021, 13, 534. [Google Scholar]
138.
Di Mauro C, Malburet S, Graillot A, Mija A. Recyclable, Repairable, and Reshapable (3R) Thermoset Materials with Shape Memory Properties from Bio-Based Epoxidized Vegetable Oils.  ACS Appl. Bio Mater. 2020, 3, 8094–8104. [Google Scholar]
139.
Di Mauro C, Genua A, Mija A. Building thermally and chemically reversible covalent bonds in vegetable oil based epoxy thermosets. Influence of epoxy-hardener ratio in promoting recyclability.  Mater. Adv. 2020, 1, 1788–1798. [Google Scholar]
140.
Xia Y, Larock RC. Vegetable oil-based polymeric materials: synthesis, properties, and applications.  Green Chem. 2010, 12, 1893–1909. [Google Scholar]
141.
Dinu R, Briand N, Mija A. Influence of Keratin on Epoxidized Linseed Oil Curing and Thermoset Performances.  ACS Sustain. Chem. Eng. 2021, 9, 15641–15652. [Google Scholar]
142.
Di Mauro C, Genua A, Mija A. Kinetical Study, Thermo-Mechanical Characteristics and Recyclability of Epoxidized Camelina Oil Cured with Antagonist Structure (Aliphatic/Aromatic) or Functionality (Acid/Amine) Hardeners.  Polymers 2021, 13, 2503. [Google Scholar]
143.
Di Mauro C, Genua A, Rymarczyk M, Dobbels C, Malburet S, Graillot A, et al. Chemical and mechanical reprocessed resins and bio-composites based on five epoxidized vegetable oils thermosets reinforced with flax fibers or PLA woven.  Compos. Sci. Technol. 2021, 205, 108678. [Google Scholar]
144.
Tan SG, Chow WS. Biobased Epoxidized Vegetable Oils and Its Greener Epoxy Blends: A Review.  Polym.-Plast. Technol. Eng. 2010, 49, 1581–1590. [Google Scholar]
145.
Di Mauro C, Thi-Nguyet T, Mija A. One-Pot Terpolymerization Synthesis of High Carbon Biocontent Recyclable Epoxy Thermosets and Their Composites with Flax Woven Fibers. ACS Sustain. Chem. Eng. 2021, 9, 8526–8538. [Google Scholar]
146.
John G, Nagarajan S, Vemula PK, Silverman JR, Pillai CKS. Natural monomers: A mine for functional and sustainable materials - Occurrence, chemical modification and polymerization.  Prog. Polym. Sci. 2019, 92, 158–209. [Google Scholar]
147.
Abbasi A, Nasef MM, Yahya WZN. Copolymerization of vegetable oils and bio-based monomers with elemental sulfur: A new promising route for bio-based polymers.  Sustain. Chem. Pharm. 2019, 13, 100158. [Google Scholar]
148.
Pfister DP, Xia Y, Larock RC. Recent Advances in Vegetable Oil-Based Polyurethanes. ChemSusChem 2011, 4, 703–717. [Google Scholar]
149.
Dinu R, Pidvoronia A, Lafont U, Damiano O, Mija A. High performance, recyclable and sustainable by design natural polyphenol-based epoxy polyester thermosets.  Green Chem. 2023, 25, 2327–2337. [Google Scholar]
150.
Abd El-Wahab H, Abd El-Fattah M, Ghazy MBM. Synthesis and characterization of new modified anti-corrosive polyesteramide resins incorporated pyromellitimide ring for surface coating.  Prog. Org. Coat. 2011, 72, 353–359. [Google Scholar]
151.
Palaskar DV, Boyer A, Cloutet E, Alfos C, Cramail H. Synthesis of Biobased Polyurethane from Oleic and Ricinoleic Acids as the Renewable Resources via the AB-Type Self-Condensation Approach.  Biomacromolecules 2010, 11, 1202–1211. [Google Scholar]
152.
Tran TN, Di Mauro C, Malburet S, Graillot A, Mija A. Dual Cross-linking of Epoxidized Linseed Oil with Combined Aliphatic/Aromatic Diacids Containing Dynamic S-S Bonds Generating Recyclable Thermosets.  ACS Appl. Bio Mater. 2020, 3, 7550–7561. [Google Scholar]
153.
Mutlu H, Meier MAR. Castor oil as a renewable resource for the chemical industry.  Eur. J. Lipid Sci. Technol. 2010, 112, 10–30. [Google Scholar]
154.
Alteheld A, Feng YK, Kelch S, Lendlein A. Biodegradable, amorphous copolyester-urethane networks having shape-memory properties.  Angew. Chem.-Intl. Edit. 2005, 44, 1188–1192. [Google Scholar]
155.
Yuan D, Chen Z, Xu C, Chen K, Chen Y. Fully Biobased Shape Memory Material Based on Novel Cocontinuous Structure in Poly(Lactic Acid)/Natural Rubber TPVs Fabricated via Peroxide-Induced Dynamic Vulcanization and in Situ Interfacial Compatibilization.  ACS Sustain. Chem. Eng. 2015, 3, 2856–2865. [Google Scholar]
156.
Samuel C, Barrau S, Lefebvre J-M, Raquez J-M, Dubois P. Designing Multiple-Shape Memory Polymers with Miscible Polymer Blends: Evidence and Origins of a Triple-Shape Memory Effect for Miscible PLLA/PMMA Blends.  Macromolecules 2014, 47, 6791–6803. [Google Scholar]
157.
Odent J, Raquez J-M, Samuel C, Barrau S, Enotiadis A, Dubois P, et al. Shape-Memory Behavior of Polylactide/Silica Ionic Hybrids.  Macromolecules 2017, 50, 2896–2905. [Google Scholar]
158.
Guo B, Chen Y, Lei Y, Zhang L, Zhou WY, Rabie ABM, et al. Biobased Poly(propylene sebacate) as Shape Memory Polymer with Tunable Switching Temperature for Potential Biomedical Applications.  Biomacromolecules 2011, 12, 1312–1321. [Google Scholar]
159.
Guo W, Kang H, Chen Y, Guo B, Zhang L. Stronger and Faster Degradable Biobased Poly(propylene sebacate) as Shape Memory Polymer by Incorporating Boehmite Nanoplatelets.  ACS Appl. Mater. Interfaces 2012, 4, 4006–4014. [Google Scholar]
160.
di Mauro C, Thi-Nguyet T, Graillot A, Mija A. Enhancing the Recyclability of a Vegetable Oil-Based Epoxy Thermoset through Initiator Influence.  ACS Sustain. Chem. Eng. 2020, 8, 7690–7700. [Google Scholar]
161.
Di Mauro C, Malburet S, Genua A, Graillot A, Mija A. Sustainable Series of New Epoxidized Vegetable Oil-Based Thermosets with Chemical Recycling Properties.  Biomacromolecules 2020, 21, 3923–3935. [Google Scholar]
162.
Li C, Dai J, Liu X, Jiang Y, Ma S, Zhu J. Green Synthesis of a Bio-Based Epoxy Curing Agent from Isosorbide in Aqueous Condition and Shape Memory Properties Investigation of the Cured Resin. Macromol. Chem. Phys. 2016, 217, 1439–1447. [Google Scholar]
163.
Liu T, Hao C, Wang L, Li Y, Liu W, Xin J, et al. Eugenol-Derived Biobased Epoxy: Shape Memory, Repairing, and Recyclability.  Macromolecules 2017, 50, 8588–8597. [Google Scholar]
164.
Miao J-T, Ge M, Wu Y, Chou TY, Wang H, Zheng L, et al. Eugenol-derived reconfigurable high-performance epoxy resin for self-deployable smart 3D structures.  Eur. Polym. J. 2020, 134, 109805. [Google Scholar]
165.
Feng X, Fan J, Li A, Li G. Biobased Tannic Acid Cross-Linked Epoxy Thermosets with Hierarchical Molecular Structure and Tunable Properties: Damping, Shape Memory, and Recyclability.  ACS Sustain. Chem. Eng. 2020, 8, 874–883. [Google Scholar]
166.
Wang S, Urban MW. Self-healing polymers.  Nat. Rev. Mater. 2020, 5, 562–583. [Google Scholar]
167.
Hornat CC, Urban MW. Shape memory effects in self-healing polymers. Prog. Polym. Sci. 2020, 102, 101208. [Google Scholar]
168.
Hia IL, Vahedi V, Pasbakhsh P. Self-Healing Polymer Composites: Prospects, Challenges, and Applications.  Polym. Rev. 2016, 56, 225–261. [Google Scholar]
169.
Shou T, Zhai MY, Wu YW, Wu SZ, Hu SK, Zhao XY, et al. Bio-Based, Recyclable and Self-Healing Polyurethane Composites with High Energy Dissipation and Shape Memory.  Macromol. Rapid Commun. 2022, 43, 2200486. [Google Scholar]
170.
Zhang GG, Tian CR, Shi JW, Zhang X, Liu J, Tan TW, et al. Mechanically Robust, Self-Repairable, Shape Memory and Recyclable Ionomeric Elastomer Composites with Renewable Lignin via Interfacial Metal-Ligand Interactions.  ACS Appl. Mater. Interfaces 2022, 14, 38216–38227. [Google Scholar]
171.
Wang F, Wang WT, Zhang C, Tang JN, Zeng XR, Wan XJ. Scalable manufactured bio-based polymer nanocomposite with instantaneous near-infrared light-actuated targeted shape memory and remote-controlled accurate self-healing.  Compos. Pt. B-Eng. 2021, 219, 108927. [Google Scholar]
172.
Capelot M, Unterlass MM, Tournilhac F, Leibler L. Catalytic Control of the Vitrimer Glass Transition. ACS Macro Lett. 2012, 1, 789–792. [Google Scholar]
173.
Kloxin CJ, Scott TF, Adzima BJ, Bowman CN. Covalent Adaptable Networks (CANS): A Unique Paradigm in Cross-Linked Polymers.  Macromolecules 2010, 43, 2643–2653. [Google Scholar]
174.
Feng ZB, Hu J, Zuo HL, Ning NY, Zhang LQ, Yu B, et al. Photothermal-Induced Self-Healable and Reconfigurable Shape Memory Bio-Based Elastomer with Recyclable Ability.  ACS Appl. Mater. Interfaces 2019, 11, 1469–1479. [Google Scholar]
175.
Yang XX, Guo LZ, Xu X, Shang SB, Liu H. A fully bio-based epoxy vitrimer: Self-healing, triple-shape memory and reprocessing triggered by dynamic covalent bond exchange.  Mater. Des. 2020, 186, 108248. [Google Scholar]
176.
Qi X, Pan CL, Zhang LQ, Yue DM. Bio-Based, Self-Healing, Recyclable, Reconfigurable Multifunctional Polymers with Both One-Way and Two-Way Shape Memory Properties.  ACS Appl. Mater. Interfaces 2023, 15, 3497–3506. [Google Scholar]
177.
Liu Y, Zhang ZT, Wang JC, Xie TL, Sun LY, Yang KF, et al. Renewable tannic acid based self-healing polyurethane with dynamic phenol-carbamate network: Simultaneously showing robust mechanical properties, reprocessing ability and shape memory.  Polymer 2021, 228, 123860. [Google Scholar]
178.
Qi X, Yang G, Jing M, Fu Q, Chiu F-C. Microfibrillated cellulose-reinforced bio-based poly(propylene carbonate) with dual shape memory and self-healing properties.  J. Mater. Chem. A 2014, 2, 20393–20401. [Google Scholar]
179.
Rodriguez ED, Luo XF, Mather PT. Linear/Network Poly(epsilon-caprolactone) Blends Exhibiting Shape Memory Assisted Self-Healing (SMASH).  ACS Appl. Mater. Interfaces 2011, 3, 152–161. [Google Scholar]
180.
Lu C, Liu Y, Liu X, Wang C, Wang J, Chu F. Sustainable Multiple- and Multistimulus-Shape-Memory and Self-Healing Elastomers with Semi-interpenetrating Network Derived from Biomass via Bulk Radical Polymerization.  ACS Sustain. Chem. Eng. 2018, 6, 6527–6535. [Google Scholar]
181.
Tibbits S. 4D Printing: Multi‐Material Shape Change.  Archit. Des. 2014, 84, 116–121. [Google Scholar]
182.
Tan LJ, Zhu W, Zhou K. Recent Progress on Polymer Materials for Additive Manufacturing.  Adv. Funct. Mater. 2020, 30, 2003062. [Google Scholar]
183.
Ryan KR, Down MP, Banks CE. Future of additive manufacturing: Overview of 4D and 3D printed smart and advanced materials and their applications.  Chem. Eng. J. 2021, 403, 126162. [Google Scholar]
184.
Zhao W, Yue C, Liu L, Liu Y, Leng J. Research Progress of Shape Memory Polymer and 4D Printing in Biomedical Application.  Adv. Healthc. Mater. 2022, 12, 2201975. [Google Scholar]
185.
Li Y, Zhang F, Liu Y, Leng J. 4D printed shape memory polymers and their structures for biomedical applications.  Sci. China-Technol. Sci. 2020, 63, 545–560. [Google Scholar]
186.
Zhang C, Cai D, Liao P, Su J-W, Deng H, Vardhanabhuti B, et al. 4D Printing of shape-memory polymeric scaffolds for adaptive biomedical implantation.  Acta Biomater. 2021, 122, 101–110. [Google Scholar]
187.
Hu X, Zhao W, Zhang Z, Xie J, He J, Cao J, et al. Novel 3D printed shape-memory PLLA-TMC/GA-TMC scaffolds for bone tissue engineering with the improved mechanical properties and degradability.  Chin. Chem. Lett. 2023, 34, 107451. [Google Scholar]
188.
Zarek M, Layani M, Cooperstein I, Sachyani E, Cohn D, Magdassi S. 3D Printing of Shape Memory Polymers for Flexible Electronic Devices.  Adv. Mater. 2016, 28, 4449. [Google Scholar]
189.
Lu X, Zhang H, Fei G, Yu B, Tong X, Xia H, et al. Liquid-Crystalline Dynamic Networks Doped with Gold Nanorods Showing Enhanced Photocontrol of Actuation.  Adv. Mater. 2018, 30, 1706597. [Google Scholar]
190.
Liu R, Kuang X, Deng J, Wang Y-C, Wang AC, Ding W, et al. Shape Memory Polymers for Body Motion Energy Harvesting and Self-Powered Mechanosensing.  Adv. Mater. 2018, 30, 1705195. [Google Scholar]
191.
Akbari S, Sakhaei AH, Kowsari K, Yang B, Serjouei A, Zhang Y, et al. Enhanced multimaterial 4D printing with active hinges.  Smart Mater. Struct. 2018, 27, 065027. [Google Scholar]
192.
Hua D, Zhang X, Ji Z, Yan C, Yu B, Li Y, et al. 3D printing of shape changing composites for constructing flexible paper-based photothermal bilayer actuators.  J. Mater. Chem. C 2018, 6, 2123–2131. [Google Scholar]
193.
Song M, Liu X, Yue H, Li S, Guo J. 4D printing of PLA/PCL-based bio-polyurethane via moderate cross-linking to adjust the microphase separation.  Polymer 2022, 256, 125190. [Google Scholar]
194.
Wu D, Leng Y-M, Fan C-J, Xu Z-Y, Li L, Shi L-Y, et al. 4D Printing of a Fully Biobased Shape Memory Copolyester via a UV-Assisted FDM Strategy.  ACS Sustain. Chem. Eng. 2022, 10, 6304–6312. [Google Scholar]
195.
Wang X, He Y, Liu Y, Leng J. Advances in shape memory polymers: Remote actuation, multi-stimuli control, 4D printing and prospective applications.  Mater. Sci. Eng. R-Rep. 2022, 151, 100702. [Google Scholar]
196.
Muthe LP, Pickering K, Gauss C. A Review of 3D/4D Printing of Poly-Lactic Acid Composites with Bio-Derived Reinforcements. Compos.  Part C Open Access 2022, 8, 100271. [Google Scholar]
197.
Lin C, Lv J, Li Y, Zhang F, Li J, Liu Y, et al. 4D-Printed Biodegradable and Remotely Controllable Shape Memory Occlusion Devices.  Adv. Funct. Mater. 2019, 29, 1906569. [Google Scholar]
198.
Zhao W, Zhang F, Leng J, Liu Y. Personalized 4D printing of bioinspired tracheal scaffold concept based on magnetic stimulated shape memory composites.  Compos. Sci. Technol. 2019, 184, 107866. [Google Scholar]
199.
Miao S, Zhu W, Castro NJ, Leng J, Zhang LG. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications.  Tissue Eng. Part C-Methods 2016, 22, 952–963. [Google Scholar]
200.
Miao S, Zhu W, Castro NJ, Nowicki M, Zhou X, Cui H, et al. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate.  Sci. Rep. 2016, 6, 27226. [Google Scholar]
201.
Lin C, Liu L, Liu Y, Leng J. 4D printing of shape memory polybutylene succinate/polylactic acid (PBS/PLA) and its potential applications.  Compos. Struct. 2022, 279, 114729. [Google Scholar]
Creative Commons

© 2024 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (https://creativecommons.org/licenses/by/4.0/).