Article Open Access

The Asthma Risk Gene, GSDMB, Promotes Mitochondrial DNA-induced ISGs Expression

Journal of Respiratory Biology and Translational Medicine . 2024, 1(1), 10005; https://doi.org/10.35534/jrbtm.2024.10005
1
Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
2
The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
3
Weil Cornell Medical School, Joan and Sanford I. Weill Department of Medicine, New York, NY 10065, USA
4
Division of Pulmonary Medicine, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
*
Authors to whom correspondence should be addressed.

Received: 27 Feb 2024    Accepted: 22 Mar 2024    Published: 31 Mar 2024   

Abstract

Released mitochondrial DNA (mtDNA) in cells activates cGAS-STING pathway, which induces expression of interferon-stimulated genes (ISGs) and thereby promotes inflammation, as frequently seen in asthmatic airways. However, whether the genetic determinant, Gasdermin B (GSDMB), the most replicated asthma risk gene, regulates this pathway remains unknown. We set out to determine whether and how GSDMB regulates mtDNA-activated cGAS-STING pathway and subsequent ISGs induction in human airway epithelial cells. Using qPCR, ELISA, native polyacrylamide gel electrophoresis, co-immunoprecipitation and immunofluorescence assays, we evaluated the regulation of GSDMB on cGAS-STING pathway in both BEAS-2B cells and primary normal human bronchial epithelial cells (nHBEs). mtDNA was extracted in plasma samples from human asthmatics and the correlation between mtDNA levels and eosinophil counts was analyzed. GSDMB is significantly associated with RANTES expression in asthmatic nasal epithelial brushing samples from the Genes-environments and Admixture in Latino Americans (GALA) II study. Over-expression of GSDMB promotes DNA-induced IFN and ISGs expression in bronchial epithelial BEAS-2B cells and nHBEs. Conversely, knockout of GSDMB led to weakened induction of interferon (IFNs) and ISGs in BEAS-2B cells. Mechanistically, GSDMB interacts with the C-terminus of STING, promoting the translocalization of STING to Golgi, leading to the phosphorylation of IRF3 and induction of IFNs and ISGs. mtDNA copy number in serum from asthmatics was significantly correlated with blood eosinophil counts especially in male subjects. GSDMB promotes the activation of mtDNA and poly (dA:dT)-induced activation of cGAS-STING pathway in airway epithelial cells, leading to enhanced induction of ISGs.

References

1.
Diseases GBD, Injuries C. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019.  Lancet 2020, 396, 1204–1222. [Google Scholar]
2.
Ferreira MAR, Mathur R, Vonk JM, Szwajda A, Brumpton B, Granell R, et al. Genetic Architectures of Childhood- and Adult-Onset Asthma Are Partly Distinct.  Am. J. Hum. Genet. 2019, 104, 665–684. [Google Scholar]
3.
Stein MM, Thompson EE, Schoettler N, Helling BA, Magnaye KM, Stanhope C, et al. A decade of research on the 17q12-21 asthma locus: Piecing together the puzzle.  J. Allergy Clin. Immunol. 2018, 142, 749–764 e3. [Google Scholar]
4.
Smit LA, Bouzigon E, Pin I, Siroux V, Monier F, Aschard H, et al. 17q21 variants modify the association between early respiratory infections and asthma.  Eur. Respir. J. 2010, 36, 57–64. [Google Scholar]
5.
Gui H, Levin AM, Hu D, Sleiman P, Xiao S, Mak ACY, et al. Mapping the 17q12-21.1 Locus for Variants Associated with Early-Onset Asthma in African Americans.  Am. J. Respir. Crit. Care Med. 2021, 203, 424–436. [Google Scholar]
6.
Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, et al. A large-scale, consortium-based genomewide association study of asthma.  N. Engl. J. Med. 2010, 363, 1211–1221. [Google Scholar]
7.
Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death.  Nature 2015, 526, 660–665. [Google Scholar]
8.
Shi J, Gao W, Shao F. Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death.  Trends Biochem. Sci. 2017, 42, 245–254. [Google Scholar]
9.
Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores.  Nature 2016, 535, 153–158. [Google Scholar]
10.
Zhang Z, Zhang Y, Xia S, Kong Q, Li S, Liu X, et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity.  Nature 2020, 579, 415–420. [Google Scholar]
11.
Panganiban RA, Sun M, Dahlin A, Park HR, Kan M, Himes BE, et al. A functional splice variant associated with decreased asthma risk abolishes the ability of gasdermin B to induce epithelial cell pyroptosis.  J. Allergy Clin. Immunol. 2018, , 142, , 1469–1478 e2. [Google Scholar]
12.
Ivanov AI, Rana N, Privitera G, Pizarro TT. The enigmatic roles of epithelial gasdermin B: Recent discoveries and controversies.  Trends Cell Biol. 2023, 33, 48–59. [Google Scholar]
13.
Das S, Miller M, Beppu AK, Mueller J, McGeough MD, Vuong C, et al. GSDMB induces an asthma phenotype characterized by increased airway responsiveness and remodeling without lung inflammation.  Proc. Natl. Acad. Sci. USA 2016, 113, 13132–13137. [Google Scholar]
14.
Rana N, Privitera G, Kondolf HC, Bulek K, Lechuga S, De Salvo C, et al. GSDMB is increased in IBD and regulates epithelial restitution/repair independent of pyroptosis.  Cell 2022, 185, 283–298 e17. [Google Scholar]
15.
Yu CH, Davidson S, Harapas CR, Hilton JB, Mlodzianoski MJ, Laohamonthonkul P, et al. TDP-43 Triggers Mitochondrial DNA Release via mPTP to Activate cGAS/STING in ALS.  Cell 2020, 183, 636–649 e18. [Google Scholar]
16.
Luo W, Zou X, Wang Y, Dong Z, Weng X, Pei Z, et al. Critical Role of the cGAS-STING Pathway in Doxorubicin-Induced Cardiotoxicity.  Circ. Res. 2023, 132, e223–e242. [Google Scholar]
17.
Decout A, Katz JD, Venkatraman S, Ablasser A. The cGAS-STING pathway as a therapeutic target in inflammatory diseases.  Nat. Rev. Immunol. 2021, 21, 548–569. [Google Scholar]
18.
Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway.  Science 2013, 339, 786–791. [Google Scholar]
19.
Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity.  Nature 2009, 461, 788–792. [Google Scholar]
20.
Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling.  Nature 2008, 455, 674–678. [Google Scholar]
21.
Zhong B, Yang Y, Li S, Wang YY, Li Y, Diao F, et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation.  Immunity 2008, 29, 538–550. [Google Scholar]
22.
Sun W, Li Y, Chen L, Chen H, You F, Zhou X, et al. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization.  Proc. Natl. Acad. Sci. USA 2009, 106, 8653–8658. [Google Scholar]
23.
Dobbs N, Burnaevskiy N, Chen D, Gonugunta VK, Alto NM, Yan N. STING Activation by Translocation from the ER Is Associated with Infection and Autoinflammatory Disease.  Cell Host Microbe 2015, 18, 157–168. [Google Scholar]
24.
Zhang C, Shang G, Gui X, Zhang X, Bai XC, Chen ZJ. Structural basis of STING binding with and phosphorylation by TBK1.  Nature 2019, 567, 394–398. [Google Scholar]
25.
Shang G, Zhang C, Chen ZJ, Bai XC, Zhang X. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP.  Nature 2019, 567, 389–393. [Google Scholar]
26.
Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation.  Science 2015, 347, aaa2630. [Google Scholar]
27.
Motwani M, Pesiridis S, Fitzgerald KA. DNA sensing by the cGAS-STING pathway in health and disease.  Nat. Rev. Genet. 2019, 20, 657–674. [Google Scholar]
28.
Jain U, Ver Heul AM, Xiong S, Gregory MH, Demers EG, Kern JT, et al. Debaryomyces is enriched in Crohn's disease intestinal tissue and impairs healing in mice.  Science 2021, 371, 1154–1159. [Google Scholar]
29.
Yum S, Li M, Fang Y, Chen ZJ. TBK1 recruitment to STING activates both IRF3 and NF-kappaB that mediate immune defense against tumors and viral infections.  Proc. Natl. Acad. Sci. USA 2021, 118, e2100225118. [Google Scholar]
30.
Ablasser A, Hur S. Regulation of cGAS- and RLR-mediated immunity to nucleic acids.  Nat. Immunol. 2020, 21, 17–29. [Google Scholar]
31.
da Silva J, Hilzendeger C, Moermans C, Schleich F, Henket M, Kebadze T, et al. Raised interferon-beta, type 3 interferon and interferon-stimulated genes - evidence of innate immune activation in neutrophilic asthma.  Clin. Exp. Allergy 2017, 47, 313–323. [Google Scholar]
32.
Bhakta NR, Christenson SA, Nerella S, Solberg OD, Nguyen CP, Choy DF, et al. IFN-stimulated Gene Expression, Type 2 Inflammation, and Endoplasmic Reticulum Stress in Asthma.  Am. J Respir. Crit. Care Med. 2018, 197, 313–324. [Google Scholar]
33.
Fu Y, Wang J, Zhou B, Pajulas A, Gao H, Ramdas B, et al. An IL-9-pulmonary macrophage axis defines the allergic lung inflammatory environment.  Sci. Immunol. 2022, 7, eabi9768. [Google Scholar]
34.
Tillie-Leblond I, Hammad H, Desurmont S, Pugin J, Wallaert B, Tonnel AB, et al. CC chemokines and interleukin-5 in bronchial lavage fluid from patients with status asthmaticus. Potential implication in eosinophil recruitment.  Am. J. Respir. Crit. Care Med. 2000, 162, 586–592. [Google Scholar]
35.
Gauthier M, Kale SL, Oriss TB, Scholl K, Das S, Yuan H, et al. Dual role for CXCR3 and CCR5 in asthmatic type 1 inflammation.  J. Allergy Clin. Immunol. 2022, 149, 113–124 e7. [Google Scholar]
36.
Rey-Jurado E, Espinosa Y, Astudillo C, Jimena Cortes L, Hormazabal J, Noguera LP, et al. Deep immunophenotyping reveals biomarkers of multisystemic inflammatory syndrome in children in a Latin American cohort.  J. Allergy Clin. Immunol. 2022, 150, 1074–1085 e11. [Google Scholar]
37.
Gauthier M, Kale SL, Oriss TB, Gorry M, Ramonell RP, Dalton K, et al. CCL5 is a potential bridge between type 1 and type 2 inflammation in asthma.  J. Allergy Clin. Immunol. 2023, 152, 94–106.e12. [Google Scholar]
38.
Schuh JM, Blease K, Bruhl H, Mack M, Hogaboam CM. Intrapulmonary targeting of RANTES/CCL5-responsive cells prevents chronic fungal asthma.  Eur. J. Immunol. 2003, 33, 3080–3090. [Google Scholar]
39.
Domizio JD, Gulen MF, Saidoune F, Thacker VV, Yatim A, Sharma K, et al. The cGAS-STING pathway drives type I IFN immunopathology in COVID-19.  Nature 2022, 603, 145–151. [Google Scholar]
40.
Sakamoto K, Furukawa T, Yamano Y, Kataoka K, Teramachi R, Walia A, et al. Serum mitochondrial DNA predicts the risk of acute exacerbation and progression of idiopathic pulmonary fibrosis.  Eur. Respir. J. 2021, 57, 2001346. [Google Scholar]
41.
Ryu C, Sun H, Gulati M, Herazo-Maya JD, Chen Y, Osafo-Addo A, et al. Extracellular Mitochondrial DNA Is Generated by Fibroblasts and Predicts Death in Idiopathic Pulmonary Fibrosis.  Am. J. Respir. Crit. Care Med. 2017, 196, 1571–181. [Google Scholar]
42.
Ryu C, Brandsdorfer C, Adams T, Hu B, Kelleher DW, Yaggi M, et al. Plasma mitochondrial DNA is associated with extrapulmonary sarcoidosis. Eur. Respir. J. 2019, 54 Eur. Respir. J. 2019, 54, 1801762. [Google Scholar]
43.
Wang LQ, Liu T, Yang S, Sun L, Zhao ZY, Li LY, et al. Perfluoroalkyl substance pollutants activate the innate immune system through the AIM2 inflammasome.  Nat. Commun. 2021, 12, 2915. [Google Scholar]
44.
Song MA, Kim JY, Gorr MW, Miller RA, Karpurapu M, Nguyen J, et al. Sex-specific lung inflammation and mitochondrial damage in a model of electronic cigarette exposure in asthma.  Am. J. Physiol. Lung Cell Mol. Physiol. 2023, 325, L568–L579. [Google Scholar]
45.
Zhao J, Dar HH, Deng Y, St Croix CM, Li Z, Minami Y, et al. PEBP1 acts as a rheostat between prosurvival autophagy and ferroptotic death in asthmatic epithelial cells.  Proc. Natl. Acad. Sci. USA 2020, 117, 14376–14385. [Google Scholar]
46.
Han Y, Chen L, Liu H, Jin Z, Wu Y, Wu Y, et al. Airway Epithelial cGAS Is Critical for Induction of Experimental Allergic Airway Inflammation.  J. Immunol. 2020, 204, 1437–1447. [Google Scholar]
47.
Huang LS, Hong Z, Wu W, Xiong S, Zhong M, Gao X, et al. mtDNA Activates cGAS Signaling and Suppresses the YAP-Mediated Endothelial Cell Proliferation Program to Promote Inflammatory Injury.  Immunity 2020, 52, 475–486 e5. [Google Scholar]
48.
He WR, Cao LB, Yang YL, Hua D, Hu MM, Shu HB. VRK2 is involved in the innate antiviral response by promoting mitostress-induced mtDNA release.  Cell. Mol. Immunol. 2021, 18, 1186–1196. [Google Scholar]
49.
Willemsen J, Neuhoff MT, Hoyler T, Noir E, Tessier C, Sarret S, et al. TNF leads to mtDNA release and cGAS/STING-dependent interferon responses that support inflammatory arthritis.  Cell Rep. 2021, , 37, , 109977. [Google Scholar]
50.
McArthur K, Whitehead LW, Heddleston JM, Li L, Padman BS, Oorschot V, et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 2018, 359 Science 2018, 359, eaao6047. [Google Scholar]
51.
White MJ, McArthur K, Metcalf D, Lane RM, Cambier JC, Herold MJ, et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production.  Cell 2014, 159, 1549–1562. [Google Scholar]
52.
Riley JS, Quarato G, Cloix C, Lopez J, O'Prey J, Pearson M, et al. Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis.  EMBO J. 2018, 37, e99238. [Google Scholar]
53.
Li X, Christenson SA, Modena B, Li H, Busse WW, Castro M, et al. Genetic analyses identify GSDMB associated with asthma severity, exacerbations, and antiviral pathways.  J. Allergy Clin. Immunol. 2021, 147, 894–909. [Google Scholar]
54.
Levardon H, Yonker LM, Hurley BP, Mou H. Expansion of Airway Basal Cells and Generation of Polarized Epithelium.  Bio. Protoc. 2018, 8, e2877. [Google Scholar]
55.
Mou H, Vinarsky V, Tata PR, Brazauskas K, Choi SH, Crooke AK, et al. Dual SMAD Signaling Inhibition Enables Long-Term Expansion of Diverse Epithelial Basal Cells.  Cell Stem Cell 2016, 19, 217–231. [Google Scholar]
56.
Jackson ND, Everman JL, Chioccioli M, Feriani L, Goldfarbmuren KC, Sajuthi SP, et al. Single-Cell and Population Transcriptomics Reveal Pan-epithelial Remodeling in Type 2-High Asthma.  Cell Rep. 2020, 32, 107872. [Google Scholar]
57.
Ravi A, Koster J, Dijkhuis A, Bal SM, Sabogal Pineros YS, Bonta PI, et al. Interferon-induced epithelial response to rhinovirus 16 in asthma relates to inflammation and FEV(1).  J. Allergy Clin. Immunol. 2019, 143, 442–427 e10. [Google Scholar]
58.
Sajuthi SP, DeFord P, Li Y, Jackson ND, Montgomery MT, Everman JL, et al. Type 2 and interferon inflammation regulate SARS-CoV-2 entry factor expression in the airway epithelium.  Nat. Commun. 2020, 11, 5139. [Google Scholar]
59.
Jin S, Tian S, Luo M, Xie W, Liu T, Duan T, et al. Tetherin Suppresses Type I Interferon Signaling by Targeting MAVS for NDP52-Mediated Selective Autophagic Degradation in Human Cells.  Mol. Cell 2017, 68, 308–322 e4. [Google Scholar]
60.
Zhou Z, He H, Wang K, Shi X, Wang Y, Su Y, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells.  Science 2020, 368, eaaz7548. [Google Scholar]
61.
Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, et al. Pore-forming activity and structural autoinhibition of the gasdermin family.  Nature 2016, 535, 111–116. [Google Scholar]
62.
Zheng Y, Liu Q, Wu Y, Ma L, Zhang Z, Liu T, et al. Zika virus elicits inflammation to evade antiviral response by cleaving cGAS via NS1-caspase-1 axis.  EMBO J. 2018, 37, e99347. [Google Scholar]
63.
Wang Y, Ning X, Gao P, Wu S, Sha M, Lv M, et al. Inflammasome Activation Triggers Caspase-1-Mediated Cleavage of cGAS to Regulate Responses to DNA Virus Infection.  Immunity 2017, 46, 393–404. [Google Scholar]
64.
Liu T, Zhou YT, Wang LQ, Li LY, Bao Q, Tian S, et al. NOD-like receptor family, pyrin domain containing 3 (NLRP3) contributes to inflammation, pyroptosis, and mucin production in human airway epithelium on rhinovirus infection.  J. Allergy Clin. Immunol. 2019, 144, 777–787 e9. [Google Scholar]
65.
You K, Wang L, Chou CH, Liu K, Nakata T, Jaiswal A, et al. QRICH1 dictates the outcome of ER stress through transcriptional control of proteostasis.  Science 2021, 371, eabb6896. [Google Scholar]
66.
Lin JH, Walter P, Yen TS. Endoplasmic reticulum stress in disease pathogenesis.  Annu. Rev. Pathol. 2008, 3, 399–425. [Google Scholar]
67.
Cocco MP, White E, Xiao S, Hu D, Mak A, Sleiman P, et al. Asthma and its relationship to mitochondrial copy number: Results from the Asthma Translational Genomics Collaborative (ATGC) of the Trans-Omics for Precision Medicine (TOPMed) program.  PLoS One 2020, 15, e0242364. [Google Scholar]
68.
Dimasuay KG, Schaunaman N, Martin RJ, Pavelka N, Kolakowski C, Gottlieb RA, et al. Parkin, an E3 ubiquitin ligase, enhances airway mitochondrial DNA release and inflammation.  Thorax 2020, 75, 717–724. [Google Scholar]
69.
Sharma S, Murphy AJ, Soto-Quiros ME, Avila L, Klanderman BJ, Sylvia JS, et al. Association of VEGF polymorphisms with childhood asthma, lung function and airway responsiveness.  Eur. Respir. J. 2009, 33, 1287–1294. [Google Scholar]
70.
Aarreberg LD, Esser-Nobis K, Driscoll C, Shuvarikov A, Roby JA, Gale M, Jr. Interleukin-1beta Induces mtDNA Release to Activate Innate Immune Signaling via cGAS-STING.  Mol. Cell 2019, 74, 801–815 e6. [Google Scholar]
71.
Cosentino K, Hertlein V, Jenner A, Dellmann T, Gojkovic M, Pena-Blanco A, et al. The interplay between BAX and BAK tunes apoptotic pore growth to control mitochondrial-DNA-mediated inflammation.  Mol. Cell 2022, 82, 933–949 e9. [Google Scholar]
72.
Rongvaux A, Jackson R, Harman CC, Li T, West AP, de Zoete MR, et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA.  Cell 2014, 159, 1563–1577. [Google Scholar]
73.
Clark K, Plater L, Peggie M, Cohen P. Use of the pharmacological inhibitor BX795 to study the regulation and physiological roles of TBK1 and IkappaB kinase epsilon: a distinct upstream kinase mediates Ser-172 phosphorylation and activation.  J. Biol. Chem. 2009, 284, 14136–14146. [Google Scholar]
74.
Chen J, Jin Z, Zhang S, Zhang X, Li P, Yang H, et al. Arsenic trioxide elicits prophylactic and therapeutic immune responses against solid tumors by inducing necroptosis and ferroptosis.  Cell. Mol. Immunol. 2023, 20, 51–64. [Google Scholar]
75.
Lama L, Adura C, Xie W, Tomita D, Kamei T, Kuryavyi V, et al. Development of human cGAS-specific small-molecule inhibitors for repression of dsDNA-triggered interferon expression.  Nat. Commun. 2019, 10, 2261. [Google Scholar]
76.
Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Rohl I, et al. cGAS produces a 2'-5'-linked cyclic dinucleotide second messenger that activates STING.  Nature 2013, 498, 380–384. [Google Scholar]
77.
Mukai K, Konno H, Akiba T, Uemura T, Waguri S, Kobayashi T, et al. Activation of STING requires palmitoylation at the Golgi.  Nat. Commun. 2016, 7, 11932. [Google Scholar]
78.
Mukai K, Ogawa E, Uematsu R, Kuchitsu Y, Kiku F, Uemura T, et al. Homeostatic regulation of STING by retrograde membrane traffic to the ER.  Nat. Commun. 2021, 12, 61. [Google Scholar]
79.
Zhang BC, Nandakumar R, Reinert LS, Huang J, Laustsen A, Gao ZL, et al. STEEP mediates STING ER exit and activation of signaling.  Nat. Immunol. 2020, 21, 868–879. [Google Scholar]
80.
Srikanth S, Woo JS, Wu B, El-Sherbiny YM, Leung J, Chupradit K, et al. The Ca(2+) sensor STIM1 regulates the type I interferon response by retaining the signaling adaptor STING at the endoplasmic reticulum.  Nat. Immunol. 2019, , 20, , 152–162. [Google Scholar]
81.
Beaufils F, Esteves P, Enaud R, Germande O, Celle A, Marthan R, et al. Mitochondria are involved in bronchial smooth muscle remodeling in severe preschool wheezers.  J. Allergy Clin. Immunol. 2021, 148, 645–651 e11. [Google Scholar]
82.
Esteves P, Blanc L, Celle A, Dupin I, Maurat E, Amoedo N, et al. Crucial role of fatty acid oxidation in asthmatic bronchial smooth muscle remodelling.  Eur. Respir. J. 2021, 58, 2004252. [Google Scholar]
83.
Trian T, Benard G, Begueret H, Rossignol R, Girodet PO, Ghosh D, et al. Bronchial smooth muscle remodeling involves calcium-dependent enhanced mitochondrial biogenesis in asthma.  J. Exp. Med. 2007, , 204, , 3173–381. [Google Scholar]
84.
Xu W, Ghosh S, Comhair SA, Asosingh K, Janocha AJ, Mavrakis DA, et al. Increased mitochondrial arginine metabolism supports bioenergetics in asthma.  J. Clin. Invest. 2016, 126, 2465–2481. [Google Scholar]
85.
Carpagnano GE, Lacedonia D, Malerba M, Palmiotti GA, Cotugno G, Carone M, et al. Analysis of mitochondrial DNA alteration in new phenotype ACOS.  BMC Pulm. Med. 2016, 16, 31. [Google Scholar]
86.
Srisomboon Y, Iijima K, Colwell M, Maniak PJ, Macchietto M, Faulk C, et al. Allergen-induced DNA release by the airway epithelium amplifies type 2 immunity.  J. Allergy Clin. Immunol. 2023, 151, 494–508 e6. [Google Scholar]
87.
Colak Y, Afzal S, Nordestgaard BG, Marott JL, Lange P. Combined value of exhaled nitric oxide and blood eosinophils in chronic airway disease: the Copenhagen General Population Study.  Eur. Respir. J. 2018, 52, 1800616. [Google Scholar]
88.
Malinovschi A, Fonseca JA, Jacinto T, Alving K, Janson C. Exhaled nitric oxide levels and blood eosinophil counts independently associate with wheeze and asthma events in National Health and Nutrition Examination Survey subjects.  J. Allergy Clin. Immunol. 2013, 132, 821–827 e1-5. [Google Scholar]
89.
Liu T, Liu S, Zhou X. Innate Immune Responses and Pulmonary Diseases.  Adv. Exp. Med. Biol. 2021, 1304, 53–71. [Google Scholar]
90.
Liu T, Liu S, Rui X, Cao Y, Hecker J, Guo F, et al. Gasdermin B, an asthma-susceptibility gene, promotes MAVS-TBK1 signaling and airway inflammation.  Eur. Respir. J. 2024, 21, 2301232. [Google Scholar]
Creative Commons

© 2024 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (https://creativecommons.org/licenses/by/4.0/).