Issue 3, Volume 3 – 2 articles

Open Access

Communication

06 June 2025

Preparation and Characterization of Dibenzyldieneacetone Loaded Microparticles for Therapeutic Purposes

Among the known chalcones, dibenzyldieneacetone is an organic molecule that was synthesized in this study and encapsulated into the Ethyl cellulose matrix by solvent evaporation technique. Microencapsulation aims to shield the core material from environmental influences (like light, humidity, temperature, and oxygen), extend its shelf life, and enhance the product’s quality. The microsphere size distribution was determined using an optical microscope. The synthesis product, as well as the particles, were characterized by ultraviolet-visible, infrared, and XRD. This study allowed us to identify particle morphology, encapsulation rate, and particle size distribution.

Open Access

Article

25 June 2025

Synthesis and Characterization of Micron-Sized Spherical Calcium Carbonate Regulated by Sodium Carboxymethyl Cellulose

Spherical calcium carbonate particles were prepared with sodium carboxymethyl cellulose (CMC) as an addition agent by using a double decomposition reaction. We studied the effects of the additional amount of CMC on the morphology and crystal forms of calcium carbonate. The morphology and size of the product were characterized by using a scanning electron microscope (SEM). We found that with the continuous increase of the additional amount of CMC, the number of prepared spherical calcium carbonate particles gradually increases. When the additional amount of CMC is 50% of the mass of calcium carbonate generated by the reaction, all calcium carbonate becomes micron-scale spherical calcium carbonate particles. The method can be used for the preparation of spherical calcium carbonate. The X-ray diffraction (XRD) was used to test the crystal form of calcium carbonate prepared by adding different qualities of CMC. It has been found that both calcite type and vaterite type calcium carbonate exist, but with the increase of the additional amount of CMC, the number of fingerprint peaks and amplitude deviated from the baseline increased gradually. These results show that the proportion of amorphous calcium carbonate is significantly increased as the additional amount of CMC increases. The study provides a reference for exploring the preparation conditions of calcium carbonate microcapsules and the mechanism of crystal form transformation.

TOP