Green Strategies for Plastic Recycling and Management

Deadline for manuscript submissions: 31 March 2024.

Guest Editor (1)

Grigorios L.  Kyriakopoulos
Dr. Grigorios L. Kyriakopoulos 
School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
Interests: Engineering, Environment, Energy, Renewable Energy Sources, Low Carbon Economy, Waste Management from Organic Pollutants, Properties of Polymer Materials, Business Administration, Education, Culture, Human Resource Management, Psychology, Urban and Regional Development, Forest Resources Management, Extroversion and Internationalization of Small and Medium Enterprises (SMEs), Development Economics, Environmental Systems, Circular Economy, Behavioral Ecology

Special Issue Information

Waste generation is a global issue of high environmental interest during the second half of the 20th century and an especially contentious issue within the last 3 decades of analysis. Plastics and polymeric materials are the most severe pollutants. The behavioral shift of consumerism and the buying preferences in mass consumption of plastic wastes in the form of either consumable products or in the form of packing garbage, both of them necessitate different collection and waste management methods that could further support energy savings in transportation, processing and final disposal to the environment, supporting the environmental sustainability of all these different types of plastic wastes generated. 

In this research context, this topic has focused on the different ways of plastics management from a cradle to cradle approach, covering all green strategies for synthesis and functionalization of polymers waste collection, including the in-source waste separation, the routes of waste management in separated batches of collection, as well as the different methods of recycling in the light of appreciating and valuing an otherwise depreciated value of plastic waste disposed. The main considerations of such a scale of research, laboratory, pilot, in-field, or follow-up studies should be not only the environmental sustainability through circulating an otherwise plastic waste matter, but also the deployed measures, priorities and future prospects of zero-emission procedures, as well as the applicability of those low-energy consumption processes to guide feasible policies of plastic waste green management.

Published Papers (2 Papers)

Open Access

Review

09 December 2024

Synthesize and Applications of Biodegradable Plastics as a Solution for Environmental Pollution Due to Non-Biodegradable Plastics, a Review

Biodegradable plastics are a potential sustainable alternative to conventional petrochemical-based non-degradable plastics. Due to their lightweight, flexibility, durability, versatile applications, chemical inertness, electrical and heat insulation, and conductivity, plastics have become an essential material for many industries, with annual production currently exceeding 450 million tons. However, these materials are non-biodegradable, leading to detrimental consequences such as the formation of microplastics from improper disposal and the generation of toxic gases, including furans, dioxins, mercury, and polychlorinated biphenyls, from burning plastic waste. This results in environmental pollution, affecting land, water bodies, and the atmosphere. In response, studies where the focus has been on creating bio-degradable polymers such as polylactic acid, polyhydroxy alkanoates, Polycaprolactone, Poly(butylene adipate-co-terephthalate), and Polybutylene succinate, which were extracted from renewable resources or chemically modified as biodegradable polymers. Biodegradable polymers exhibit a wide range of properties and can now be modified to be used in various applications suitable for substituting some conventional plastic products. Thus, the article highlights the critical issue of environmental pollution caused by non-biodegradable plastics and provides a comprehensive overview of the synthesis processes, properties, novel applications, and challenges associated with the use of biodegradable plastics.

Samadhi HimanthaKelaniyagama
Asangi Gannoruwa*
A.H.L. Renuka Nilmini
Sustain. Polym. Energy
2024,
2
(4), 10011; 
Open Access

Review

30 December 2024

Fire-Retardant Wastepaper Reinforced Waste Polyethylene Composite: A Review

The increase in fire outbreaks recently and the need for eco-friendly and fire-resistant materials have inspired a wave of studies, focusing on producing innovative composite materials with effective fire-resistant properties. This review delves into the world of fire-resistant wastepaper-reinforced waste polyethylene composites. Using wastepaper as a strengthening factor in polyethylene matrices, combined with fire-retardant additives like nanoparticles, introduces a hopeful path for waste management and improved material properties. This work carefully considers the combining approaches, physical and mechanical properties, fire-resistant mechanisms, and environmental impacts of these composites. The review underscores the possible and potential applications, difficulties, and prospects of such environmentally friendly materials in various industries. Understanding these composites’ blending, attributes, and conceivable utilization is essential for advancing maintainable and fire-safe material innovation in pursuing a greener future.

Mohammed Akabe
Tajudeen KolawoleBello
Yusuf Adamu
Mohammed  TijaniIsa*
Sustain. Polym. Energy
2025,
3
(1), 10013; 
TOP