Review Open Access

New Trends on Photoswitchable Antibiotics: From Syntheses to Applications

Photocatalysis: Research and Potential. 2024, 1(2), 10007; https://doi.org/10.35534/prp.2023.10007
1
ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, Université de Technologie de Compiègne, CS 60319, F-60203 Compiègne Cedex, France
2
CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, Université de Technologie de Compiègne, CS 60319, F-60203 Compiègne Cedex, France
3
Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE – Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University of Lille, F-59000 Lille, France
4
Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000 Lille, France
*
Authors to whom correspondence should be addressed.

Received: 27 Jan 2023    Accepted: 07 Oct 2023    Published: 12 Oct 2023   

Abstract

Antibiotics are excreted in the environment after being used to treat bacterial infections in human and animals. These residues are poorly eliminated by the actual wastewater treatment processes, affecting animal, human and environmental health. This has led to the emergence of antibiotic resistance in bacterial pathogens. To combat this problem, photopharmacology has emerged in the last decades. This approach, based on the coupling of a drug with a photochromic component, is a promising way to control antibiotic activity by light irradiation and consequently limit antibioresistance. Thus, this review summarizes the study on the effect of the irradiation light on the antimicrobial activity of coupling compounds.

References

1.
Demain AL. Antibiotics: Natural products essential to human health.  Med. Res. Rev. 2009, 29, 821–842. [Google Scholar]
2.
Waksman SA. What Is an Antibiotic or an Antibiotic Substance?  Mycologia 1947, 39, 565–569. [Google Scholar]
3.
Loree J, Lappin SL. Bacteriostatic Antibiotics. StatPearls. StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: http://www.ncbi.nlm.nih.gov/books/NBK547678/ (accessed on 27 September 2022).
4.
Tan SY, Tatsumura Y. Alexander Fleming (1881–1955): Discoverer of penicillin.  Singapore Med. J. 2015, 56, 366–367. [Google Scholar]
5.
Vollmer W, Blanot D, De Pedro MA. Peptidoglycan structure and architecture.  FEMS Microbiol. Rev. 2008, 32, 149–167. [Google Scholar]
6.
Bush K, Bradford PA. β-Lactams and β-Lactamase Inhibitors: An Overview.  Cold Spring Harb. Perspect. Med. 2016, 6, a025247. [Google Scholar]
7.
Sarkar P, Yarlagadda V, Ghosh C, Haldar J. A review on cell wall synthesis inhibitors with an emphasis on glycopeptide antibiotics.  MedChemComm 2017, 8, 516–533. [Google Scholar]
8.
Pandey N, Cascella M. Beta Lactam Antibiotics. StatPearls. StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: http://www.ncbi.nlm.nih.gov/books/NBK545311/ (accessed on 21 October 2022).
9.
Lima LM, da Silva BNM, Barbosa G, Barreiro EJ. β-lactam antibiotics: An overview from a medicinal chemistry perspective. Eur. J. Med. Chem. 2020, 208, 112829. [Google Scholar]
10.
Edoo Z, Arthur M, Hugonnet JE. Reversible inactivation of a peptidoglycan transpeptidase by a β-lactam antibiotic mediated by β-lactam-ring recyclization in the enzyme active site.  Sci. Rep. 2017, 7, 9136. [Google Scholar]
11.
Wilhelm MP. Vancomycin. Mayo Clin. Proc. 1991, 66, 1165–1170. [Google Scholar]
12.
Shea KW, Cunha BA. Teicoplanin.  Med. Clin. N. Am. 1995, 79, 833–844. [Google Scholar]
13.
Butler MS, Hansford KA, Blaskovich MAT, Halai R, Cooper MA. Glycopeptide antibiotics: Back to the future.  J. Antibiot. 2014, 67, 631–644. [Google Scholar]
14.
Strahl H, Errington J. Bacterial Membranes: Structure, Domains, and Function.  Ann. Rev. Microbiol. 2017, 71, 519–538. [Google Scholar]
15.
Shatri G, Tadi P. Polymyxin. StatPearls. StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: http://www.ncbi.nlm.nih.gov/books/NBK557540/ (accessed on 24 October 2022).
16.
Zerfas BL, Joo Y, Gao J. Gramicidin A Mutants with Antibiotic Activity against Both Gram-Positive and Gram-Negative Bacteria.  ChemMedChem 2016, 11, 629–636. [Google Scholar]
17.
Satlin MJ, Jenkins SG. 151 - Polymyxins. In Infectious Diseases, 4th ed.; Elsevier: Oxford, UK, 2017; pp. 1285–1288.
18.
Shaheen M, Li J, Ross AC, Vederas JC, Jensen SE. Paenibacillus polymyxa PKB1 Produces Variants of Polymyxin B-Type Antibiotics.  Chem. Biol. 2011, 18, 1640–1648. [Google Scholar]
19.
Trimble MJ, Mlynárčik P, Kolář M, Hancock REW. Polymyxin: Alternative Mechanisms of Action and Resistance.  Cold Spring Harb. Perspect. Med. 2016, 6, a025288. [Google Scholar]
20.
Evans ME, Feola DJ, Rapp RP. Polymyxin B Sulfate and Colistin: Old Antibiotics for Emerging Multiresistant Gram-Negative Bacteria.  Ann. Pharmacother. 1999, 33, 960–967. [Google Scholar]
21.
Ledger EVK, Sabnis A, Edwards AM. Polymyxin and lipopeptide antibiotics: membrane-targeting drugs of last resort.  Microbiology 2022, 168, 001136. [Google Scholar]
22.
Yu Z, Qin W, Lin J, Fang S, Qiu J. Antibacterial Mechanisms of Polymyxin and Bacterial Resistance.  Biomed. Res. Int. 2015, 2015, 679109. [Google Scholar]
23.
Burkhart BM, Gassman RM, Langs DA, Pangborn WA, Duax WL, Pletnev V. Gramicidin D conformation, dynamics and membrane ion transport.  Biopolymers 1999, 51, 129–144. [Google Scholar]
24.
Duttagupta I, Ghosh KC, Sinha S. Synthetic Studies Toward Nonribosomal Peptides. In Studies in Natural Products Chemistry; Elsevier: Oxford, UK, 2016; pp. 29–64.
25.
Prenner EJ, Lewis RNAH, Kondejewski LH, Hodges RS, McElhaney RN. Differential scanning calorimetric study of the effect of the antimicrobial peptide gramicidin S on the thermotropic phase behavior of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol lipid bilayer membranes.  Biochim. Biophys. Acta Biomembr. 1999, 1417, 211–223. [Google Scholar]
26.
Prenner EJ, Lewis RNAH, Neuman KC, Gruner SM, Kondejewski LH, Hodges RS, et al. Nonlamellar Phases Induced by the Interaction of Gramicidin S with Lipid Bilayers. A Possible Relationship to Membrane-Disrupting Activity.  Biochemistry 1997, 36, 7906–7916. [Google Scholar]
27.
Ashrafuzzaman Md, Andersen OS, McElhaney RN. The antimicrobial peptide gramicidin S permeabilizes phospholipid bilayer membranes without forming discrete ion channels.  Biochim. Biophys. Acta Biomembr. 2008, 1778, 2814–2822. [Google Scholar]
28.
Cells Can Replicate Their DNA Precisely | Learn Science at Scitable. Available online: http://www.nature.com/scitable/topicpage/cells-can-replicate-their-dna-precisely-6524830 (accessed on 8 January 2023).
29.
Anderson VE, Osheroff N. Type II Topoisomerases as Targets for Quinolone Antibacterials Turning Dr. Jekyll into Mr. Hyde.  Curr. Pharm. Des. 2001, 7, 337–353. [Google Scholar]
30.
Pham TDM, Ziora ZM, Blaskovich MAT. Quinolone antibiotics.  MedChemComm 2019, 10, 1719–1739. [Google Scholar]
31.
Yan A, Bryant EE. Quinolones. StatPearls. StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: http://www.ncbi.nlm.nih.gov/books/NBK557777/ (accessed on 7 January 2023).
32.
Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance – PMC. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7730664/ (accessed on 10 October 2022).
33.
Mechanisms of Resistance to Quinolones | Clinical Infectious Diseases | Oxford Academic. Available online: https://academic.oup.com/cid/article/41/Supplement_2/S120/307501 (accessed on 10 October 2022).
34.
Bermingham A, Derrick JP. The folic acid biosynthesis pathway in bacteria: evaluation of potential for antibacterial drug discovery. Bioessays 2002, 24, 637–648. [Google Scholar]
35.
Sköld O. Sulfonamide resistance: mechanisms and trends.  Drug Resist. Updates 2000, 3, 155–160. [Google Scholar]
36.
Gleckman R, Blagg N, Joubert DW. Trimethoprim: Mechanisms of Action, Antimicrobial Activity, Bacterial Resistance, Pharmacokinetics, Adverse Reactions, and Therapeutic Indications.  Pharmacother. J. Hum. Pharmacol. Drug Ther. 1981, 1, 14–19. [Google Scholar]
37.
Abril AG, Rama JLR, Sánchez-Pérez A, Villa TG. Prokaryotic sigma factors and their transcriptional counterparts in Archaea and Eukarya.  Appl. Microbiol. Biotechnol. 2020, 104, 4289–4302. [Google Scholar]
38.
Floss HG, Yu TW. Rifamycin Mode of Action, Resistance, and Biosynthesis. Chem Rev. 2005, 105, 621–632. [Google Scholar]
39.
Rifamycin Antibiotics and the Mechanisms of Their Failure | The Journal of Antibiotics. Available online: https://www.nature.com/articles/s41429-021-00462-x (accessed on 10 October 2022).
40.
Chopra I, Roberts M. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance.  Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar]
41.
Krause KM, Serio AW, Kane TR, Connolly LE. Aminoglycosides: An Overview.  Cold Spring Harb. Perspect. Med. 2016, 6, a027029. [Google Scholar]
42.
Patel S, Preuss CV, Bernice F. Vancomycin. StatPearls. StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: http://www.ncbi.nlm.nih.gov/books/NBK459263/ (accessed on 24 October 2022).
43.
Kanoh S, Rubin BK. Mechanisms of Action and Clinical Application of Macrolides as Immunomodulatory Medications. Clin. Microbiol. Rev. 2010, 23, 590–615. [Google Scholar]
44.
Rijal N. Microbe Online. Macrolides: Mode of Action, Mechanism of Resistance. 2022. Available online: https://microbeonline.com/macrolides-action-resistance/ (accessed on 10 October 2022).
45.
Fernández-Martínez LT, Borsetto C, Gomez-Escribano JP, Bibb MJ, Al-Bassam MM, Chandra G, et al. New Insights into Chloramphenicol Biosynthesis in Streptomyces venezuelae ATCC 10712.  Antimicrob. Agents Chemother. 2014, 58, 7441–7450. [Google Scholar]
46.
Chloramphenicol: Structure and Mechanism of Action | Antibiotics. Biology Discussion. 2016 Available online: https://www.biologydiscussion.com/medical-microbiology/chloramphenicol-structure-and-mechanism-of-action-antibiotics/55910 (accessed on 7 January 2023).
47.
PubChem. Chloramphenicol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/5959 (accessed on 7 January 2023).
48.
Oong GC, Tadi P. Chloramphenicol. StatPearls. StatPearls Publishing: Treasure Island, FL, USA, 2022 Available online: http://www.ncbi.nlm.nih.gov/books/NBK555966/ (accessed on 10 October 2022).
49.
Barbachyn MR. The Oxazolidinones. In Antibacterials; Springer International Publishing: Cham, Switzerland, 2017; Topics in Medicinal Chemistry; Volume 26; pp. 97–121.
50.
Bozdogan B, Appelbaum PC. Oxazolidinones: activity, mode of action, and mechanism of resistance.  Int. J. Antimicrob. Agents 2004, 23, 113–119. [Google Scholar]
51.
Dahshan H. Pharma Guide, Basic and Clinical Pharmacology; University Book Centre: Cairo, Egypt, 2015.
52.
Nankervis H, Thomas KS, Delamere FM, Barbarot S, Rogers NK, Williams HC. Antimicrobials Including Antibiotics, Antiseptics and Antifungal Agents. Scoping Systematic Review of Treatments for Eczema. NIHR Journals Library, 2016. Available online: https://www.ncbi.nlm.nih.gov/books/NBK363143/ (accessed on 28 October 2022).
53.
Kolář M, Urbánek K, Látal T. Antibiotic selective pressure and development of bacterial resistance.  Int. J. Antimicrob. Agents 2001, 17, 357–363. [Google Scholar]
54.
Lasemi E, Navi F, Lasemi R, Lasemi N, Lasemi E, Navi F, et al. Complications of Antibiotic Therapy and Introduction of Nanoantibiotics. In A Textbook of Advanced Oral and Maxillofacial Surgery Volume 3; IntechOpen: Rijeka, Croatia, 2016.
55.
Munita JM, Arias CA. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016, 4. doi:10.1128/microbiolspec.VMBF-0016‑2015.
56.
Pan X, He Y, Chen T, Chan KF, Zhao Y. Modified Penicillin Molecule with Carbapenem-Like Stereochemistry Specifically Inhibits Class C β-Lactamases.  Antimicrob. Agents Chemother. 2017, 61, e01288-17. [Google Scholar]
57.
D’Costa V, Wright GD. Biochemical Logic of Antibiotic Inactivation and Modification. In Antimicrobial Drug Resistance: Mechanisms of Drug Resistance; Humana Press: Totowa, NJ, USA, 2009; pp. 81–95.
58.
Elufisan T, Oyedara O, Oluyide O. Updates on microbial resistance to drugs.  Afr. J. Microbiol. Res. 2012, 6, 4833–4844. [Google Scholar]
59.
Salahuddin P, Kumar A, Khan AU. Structure, Function of Serine and Metallo-β-lactamases and their Inhibitors.  Curr. Protein Pept. Sci. 2018, 19, 130–144. [Google Scholar]
60.
Bush K, Bradford PA. Interplay between β-lactamases and new β-lactamase inhibitors.  Nat. Rev. Microbiol. 2019, 17, 295–306. [Google Scholar]
61.
Schulz GE. Bacterial porins: structure and function.  Curr. Opin. Cell Biol. 1993, 5, 701–707. [Google Scholar]
62.
Fernández L, Hancock REW. Adaptive and Mutational Resistance: Role of Porins and Efflux Pumps in Drug Resistance.  Clin. Microbiol. Rev. 2012, 25, 661–681. [Google Scholar]
63.
Pagès JM, James CE, Winterhalter M. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria.  Nat. Rev. Microbiol. 2008, 6, 893–903. [Google Scholar]
64.
Amaral L, Martins A, Spengler G, Molnar J. Efflux pumps of Gram-negative bacteria: what they do, how they do it, with what and how to deal with them.  Front. Pharmacol. 2014, 4, 168. [Google Scholar]
65.
Kapoor G, Saigal S, Elongavan A. Action and resistance mechanisms of antibiotics: A guide for clinicians.  J. Anaesthesiol. Clin. Pharmacol. 2017, 33, 300–305. [Google Scholar]
66.
Andersson DI, Hughes D. Selection and Transmission of Antibiotic-Resistant Bacteria. Microbiol. Spectr. 2017, 5. doi:10.1128/microbiolspec.mtbp-0013-2016.
67.
Mackenzie JS, Jeggo M. The One Health Approach—Why Is It So Important?  Tropic. Med. Infect. Dis. 2019, 4, 88. [Google Scholar]
68.
Schulte AM, Kolarski D, Sundaram V, Srivastava A, Tama F, Feringa BL, et al. Light-Control over Casein Kinase 1δ Activity with Photopharmacology: A Clear Case for Arylazopyrazole-Based Inhibitors.  Int. J. Mol. Sci. 2022, 23, 5326. [Google Scholar]
69.
Fregoni J, Granucci G, Coccia E, Persico M, Corni S. Manipulating azobenzene photoisomerization through strong light–molecule coupling.  Nat. Commun. 2018, 9, 4688. [Google Scholar]
70.
Beharry AA, Woolley GA. Azobenzene photoswitches for biomolecules.  Chem. Soc. Rev. 2011, 40, 4422–4437. [Google Scholar]
71.
Volarić J, Szymanski W, Simeth NA, Feringa BL. Molecular photoswitches in aqueous environments.  Chem. Soc. Rev. 2021, 50, 12377–12449. [Google Scholar]
72.
Specht A, Bolze F, Omran Z, Nicoud J, Goeldner M. Photochemical tools to study dynamic biological processes.  HFSP J. 2009, 3, 255–264. [Google Scholar]
73.
Brieke C, Heckel A. Spiropyran Photoswitches in the Context of DNA: Synthesis and Photochromic Properties.  Chem. Eur J. 2013, 19, 15726–15734. [Google Scholar]
74.
Kirchner S, Leistner AL, Pianowski ZL. Photoswitchable Peptides and Proteins. In Molecular Photoswitches; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2022; pp. 987–1013.
75.
Jäschke A. Genetically encoded RNA photoswitches as tools for the control of gene expression.  FEBS Lett. 2012, 586, 2106–2111. [Google Scholar]
76.
Ihalainen JA, Bredenbeck J, Pfister R, Helbing J, Chi L, van Stokkum IHM, et al. Folding and unfolding of a photoswitchable peptide from picoseconds to microseconds.  Proc. Natl. Acad. Sci. USA 2007, 104, 5383–5388. [Google Scholar]
77.
Chai J, Zhao Y, Xu L, Li Q, Hu XY, Guo DS, et al. A Noncovalent Photoswitch for Photochemical Regulation of Enzymatic Activity.  Angew. Chem. Int. Ed. 2022, 61, e202116073. [Google Scholar]
78.
Shimoboji T, Ding ZL, Stayton PS, Hoffman AS. Photoswitching of Ligand Association with a Photoresponsive Polymer−Protein Conjugate.  Bioconjug. Chem. 2002, 13, 915–919. [Google Scholar]
79.
Adrian M, Nijenhuis W, Hoogstraaten RI, Willems J, Kapitein LC. A Phytochrome-Derived Photoswitch for Intracellular Transport.  ACS Synth. Biol. 2017, 6, 1248–1256. [Google Scholar]
80.
Hüll K, Morstein J, Trauner D. In Vivo Photopharmacology.  Chem. Rev. 2018, 118, 10710–10747. [Google Scholar]
81.
Szymański W, Beierle JM, Kistemaker HAV, Velema WA, Feringa BL. Reversible Photocontrol of Biological Systems by the Incorporation of Molecular Photoswitches.  Chem. Rev. 2013, 113, 6114–6178. [Google Scholar]
82.
Bacchus W, Fussenegger M. The use of light for engineered control and reprogramming of cellular functions.  Curr. Opin. Biotechnol. 2012, 23, 695–702. [Google Scholar]
83.
Majima T, Tojo S, Ishida A, Takamuku S. Cis-Trans Isomerization and Oxidation of Radical Cations of Stilbene Derivatives.  J. Org. Chem. 1996, 61, 7793–800. [Google Scholar]
84.
Chen PC, Chieh YC. Azobenzene and stilbene: a computational study. J. Mol. Struct. THEOCHEM 2003, 624, 191–200. [Google Scholar]
85.
Drake HF, Day GS, Xiao Z, Zhou HC, Ryder MR. Light-induced switchable adsorption in azobenzene- and stilbene-based porous materials.  TRECHEM 2022, 4, 32–47. [Google Scholar]
86.
Ali AA, Kharbash R, Kim Y. Chemo- and biosensing applications of spiropyran and its derivatives—A review.  Anal. Chim. Acta 2020, 1110, 199–223. [Google Scholar]
87.
Lukyanov BS, Lukyanova MB. Spiropyrans: Synthesis, Properties, and Application. (Review).  Chem. Heterocycl. Compd. 2005, 41, 281–311. [Google Scholar]
88.
Aldoshin SM. Spiropyrans: Structural Features and Photochemical Properties.  Mol. Cryst. Liquid Cryst. Sci. Technol. Sect. A Mol. Cryst. Liquid Cryst. 1994, 246, 207–214. [Google Scholar]
89.
Kortekaas L, Browne WR. The evolution of spiropyran: fundamentals and progress of an extraordinarily versatile photochrome.  Chem. Soc. Rev. 2019, 48, 3406–3424. [Google Scholar]
90.
Fagan A, Bartkowski M, Giordani S. Spiropyran-Based Drug Delivery Systems.  Front. Chem. 2021, 9, 720087. [Google Scholar]
91.
Koeppe B, Römpp F. Reversible Spatial Control in Aqueous Media by Visible Light: A Thioindigo Photoswitch that is Soluble and Operates Efficiently in Water.  Chem. Eur. J. 2018, 24, 14382–14386. [Google Scholar]
92.
Li D, Yang Y, Li C, Liu Y. Unveiling the mechanism of the promising two-dimensional photoswitch—Hemithioindigo. Spectrochim.  Acta Part A Mol. Biomol. Spectrosc. 2018, 200, 1–9. [Google Scholar]
93.
Vlajić M, Unger W, Bruns J, Rueck-Braun K. Photoswitching of fulgimides in different environments on silicon surfaces.  Appl. Surface Sci. 2019, 465, 686–692. [Google Scholar]
94.
Renth F, Temps F. Fulgides and Fulgimides. In Molecular Photoswitches; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2022; pp. 177–192.
95.
Lachmann D, Lahmy R, König B. Fulgimides as Light‐Activated Tools in Biological Investigations.  Eur. J. Org. Chem. 2019, 2019, 5018–5024. [Google Scholar]
96.
Matsuda K, Irie M. Diarylethene as a photoswitching unit.  J. Photochem. Photobiol. C Photochem. Rev. 2004, 5, 169–182. [Google Scholar]
97.
Liu R, Yang Y, Cui Q, Xu W, Peng R, Li L. A Diarylethene-Based Photoswitch and its Photomodulation of the Fluorescence of Conjugated Polymers.  Chem. Eur. J. 2018, 24, 17756–17766. [Google Scholar]
98.
Nakatani K, Sato H, Fukuda R. A catalyzed E/Z isomerization mechanism of stilbene using para-benzoquinone as a triplet sensitizer.  Phys. Chem. Chem. Phys. 2022, 24, 1712–1721. [Google Scholar]
99.
Wang C, Waters MDJ, Zhang P, Suchan J, Svoboda V, Luu TT, et al. Different timescales during ultrafast stilbene isomerization in the gas and liquid phases revealed using time-resolved photoelectron spectroscopy.  Nat Chem. 2022, 14, 1126–1132. [Google Scholar]
100.
Waldeck DH. Photoisomerization dynamics of stilbenes in polar solvents.  J. Mol. Liquids. 1993, 57, 127–148. [Google Scholar]
101.
Crecca CR, Roitberg AE. Theoretical Study of the Isomerization Mechanism of Azobenzene and Disubstituted Azobenzene Derivatives.  J. Phys. Chem. A 2006, 110, 8188–8203. [Google Scholar]
102.
Farka D, Scharber M, Głowacki ED, Sariciftci NS. Reversible Photochemical Isomerization of N,N′-Di(t -butoxycarbonyl)indigos.  J. Phys. Chem. A 2015, 119, 3563–3568. [Google Scholar]
103.
Lemieux RP. Photoswitching of ferroelectric liquid crystals using chiral thioindigo dopants: The development of a photochemical switch hitter.  Chem. Record. 2004, 3, 288–295. [Google Scholar]
104.
Petermayer C, Dube H. Indigoid Photoswitches: Visible Light Responsive Molecular Tools.  Acc. Chem. Res. 2018, 51, 1153–1163. [Google Scholar]
105.
Wiedbrauk S, Dube H. Hemithioindigo—an emerging photoswitch.  Tetrahedr. Lett. 2015, 56, 4266–4274. [Google Scholar]
106.
Berdnikova DV. Visible-range hemi-indigo photoswitch: ON–OFF fluorescent binder for HIV-1 RNA.  Chem. Commun. 2019, 55, 8402–8405. [Google Scholar]
107.
Bossi ML, Murgida DH, Aramendía PF. Photoisomerization of Azobenzenes and Spirocompounds in Nematic and in Twisted Nematic Liquid Crystals.  J. Phys. Chem. B 2006, 110, 13804–13811. [Google Scholar]
108.
Crespi S, Simeth NA, König B. Heteroaryl azo dyes as molecular photoswitches.  Nat. Rev. Chem. 2019, 3, 133–146. [Google Scholar]
109.
Göstl R, Senf A, Hecht S. Remote-controlling chemical reactions by light: Towards chemistry with high spatio-temporal resolution.  Chem. Soc. Rev. 2014, 43, 1982. [Google Scholar]
110.
Stranius K, Börjesson K. Determining the Photoisomerization Quantum Yield of Photoswitchable Molecules in Solution and in the Solid State.  Sci. Rep. 2017, 7, 41145. [Google Scholar]
111.
Imato K, Momota K, Kaneda N, Imae I, Ooyama Y. Photoswitchable Adhesives of Spiropyran Polymers.  Chem. Mater. 2022, 34, 8289–8296. [Google Scholar]
112.
Velema WA, Szymanski W, Feringa BL. Photopharmacology: Beyond Proof of Principle.  J. Am. Chem. Soc. 2014, 136, 2178–2191. [Google Scholar]
113.
Boelke J, Hecht S. Designing Molecular Photoswitches for Soft Materials Applications.  Adv. Opt. Mater. 2019, 7, 1900404. [Google Scholar]
114.
Bonardi F, London G, Nouwen N, Feringa BL, Driessen AJM. Light-Induced Control of Protein Translocation by the SecYEG Complex.  Angew. Chem. Int. Ed. 2010, 49, 7234–7238. [Google Scholar]
115.
Mayer G, Heckel A.  Biologically Active Molecules with a “Light Switch”.  Angew. Chem. Int. Ed. 2006, 45, 4900–4921. [Google Scholar]
116.
Koçer A, Walko M, Meijberg W, Feringa BL. A Light-Actuated Nanovalve Derived from a Channel Protein.  Science 2005, 309, 755–758. [Google Scholar]
117.
Wegener M, Hansen MJ, Driessen AJM, Szymanski W, Feringa BL. Photocontrol of Antibacterial Activity: Shifting from UV to Red Light Activation.  J. Am. Chem. Soc. 2017, 139, 17979–17986. [Google Scholar]
118.
Lauxen AI, Kobauri P, Wegener M, Hansen MJ, Galenkamp NS, Maglia G, et al. Mechanism of Resistance Development in E. coli against TCAT, a Trimethoprim-Based Photoswitchable Antibiotic.  Pharmaceuticals 2021, 14, 392. [Google Scholar]
119.
Velema WA, van der Berg JP, Hansen MJ, Szymanski W, Driessen AJM, Feringa BL.  Optical control of antibacterial activity.  Nat. Chem. 2013, 5, 924–928. [Google Scholar]
120.
Velema WA, Hansen MJ, Lerch MM, Driessen AJM, Szymanski W, Feringa BL. Ciprofloxacin–Photoswitch Conjugates: A Facile Strategy for Photopharmacology.  Bioconjug. Chem. 2015, 26, 2592–2597. [Google Scholar]
121.
Fu X, Bai H, Qi R, Zhao H, Peng K, Lv F, et al. Optically-controlled supramolecular self-assembly of an antibiotic for antibacterial regulation.  Chem. Commun. 2019, 55, 14466–14469. [Google Scholar]
122.
Fu X, Yu J, Dai N, Huang Y, Lv F, Liu L, et al. Optical Tuning of Antibacterial Activity of Photoresponsive Antibiotics.  ACS Appl. Bio Mater. 2020, 3, 4751–4755. [Google Scholar]
123.
Zhang H, Qi Y, Zhao X, Li M, Wang R, Cheng H, et al. Dithienylethene-Bridged Fluoroquinolone Derivatives for Imaging-Guided Reversible Control of Antibacterial Activity.  J. Org. Chem. 2022, 87, 7446–7455. [Google Scholar]
124.
Li Z, Wang Y, Li M, Zhang H, Guo H, Ya H, et al. Synthesis and properties of dithienylethene-functionalized switchable antibacterial agents.  Org. Biomol. Chem. 2018, 16, 6988–6997. [Google Scholar]
125.
Babii O, Afonin S, Berditsch M, Reiβer S, Mykhailiuk PK, Kubyshkin VS, et al. Controlling Biological Activity with Light: Diarylethene-Containing Cyclic Peptidomimetics.  Angew. Chem. Int. Ed. 2014, 53, 3392–3395. [Google Scholar]
Creative Commons

© 2024 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (https://creativecommons.org/licenses/by/4.0/).