Article Open Access

Photocatalytic Efficiency of Suspended and Immobilized TiO2 P25 for Removing Myclobutanil, Penconazole and Their Commercial Formulations

Photocatalysis: Research and Potential. 2024, 1(1), 10004; https://doi.org/10.35534/prp.2023.10004
1
Institut de Chimie et Procédés Pour l’Energie, l’Environnement et la Santé (ICPEES), CNRS-UMR7515 Université de Strasbourg, Antenne de Saint-Avold, Université de Lorraine, 12 rue Victor Demange, 57500 Saint-Avold, France
2
Laboratoire de Thermodynamique et de Physico-chimie du milieu (LTPCM), UFR Sciences des Fondamentales et Appliquées (SFA), Université Nangui Abrogoua d’Abidjan, 02 BP 801 Abidjan 02, Côte d’Ivoire
3
Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), CNRS-UMR7515-University Strasbourg, 25 Rue Becquerel, 67087 Strasbourg, France
4
Laboratoire de Chimie Physique, UFR Sciences des Structures de la Matière et de la Technologie (SSMT), Université Félix Houphouët Boigny d’Abidjan, 22 BP 582 Abidjan 22, Côte d’Ivoire
*
Authors to whom correspondence should be addressed.

Received: 10 Mar 2023    Accepted: 29 Jun 2023    Published: 05 Jul 2023   

Abstract

Fungicide application in viticulture is a major source of surface and groundwater contamination. It is therefore essential to find solutions to stop this environmental pollution. Heterogeneous photocatalysis is an advanced oxidation method for the degradation and mineralization of organic pollutants in water. TiO2 P25 photocatalyst in suspension has been used for removing the fungicides Myclobutanil and Penconazol, and their respective commercial formulations Systhane and Topas, in contaminated water. The apparent kinetic constants kapp of fungicides removal over 30 min batch treatment was higher for a mixture of pure molecules of Myclobutanil and Penconazol than for a mixture of their commercial formulations (17.5 × 10−3 by comparison with 10.3 × 10−3 min−1 for Myclobutanil, and 10.0 × 10−3 by comparison with 2.80 × 10−3 min−1 for Penconazol). TOC removal constants kTOC were similar for the two mixtures, due to the presence of mineral and organic additives in the commercial formulations. To easily recover the photocatalyst after fungicide removal, TiO2 P25 has been supported on β-SiC foam. Fungicides degradation was lower with supported photocatalysts than with the suspension of photocatalyst nanoparticles (NPs) because of a lower concentration of active sites on the supported photocatalyst than in the catalyst suspension. However, catalyst recovery and reuse after fungicide removal is obviously easier with TiO2/β-SiC material than with a suspension of TiO2 which requires long and expensive filtration operations.

References

2.
Fujii S, Polprasert C, Tanaka S, Lien NPH, Qiu Y. New POPs in the water environment: distribution, bioaccumulation and treatment of perfluorinated compounds–a review paper. J. Water Supply Res. Technol. AQUA 2007, 56, 313–326. [Google Scholar]
3.
Vaiano V, Iervolino G, Rizzo L, Sannino D. Advanced Oxidation Processes for the Removal of Food Dyes in Wastewater.  Curr. Org. Chem. 2007, 21, 1068–1073. [Google Scholar]
4.
Asghar A, Abdul Raman AA, Wan Daud WMA. Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review.  J. Clean. Prod. 2015, 87, 826–838. [Google Scholar]
5.
Miklos DB, Hartl R, Michel P, Linden KG, Drewes JE, Hübner U. UV/H2O2 process stability and pilot-scale validation for trace organic chemical removal from wastewater treatment plant effluents.  Water Res. 2018, 136, 169–179. [Google Scholar]
6.
Rott E, Kuch B, Lange C, Richter P, Minke R. Influence of Ammonium Ions, Organic Load and Flow Rate on the UV/Chlorine AOP Applied to Effluent of a Wastewater Treatment Plant at Pilot Scale.  Int. J. Environ. Res. Public Health 2018, 15, 1276. [Google Scholar]
7.
Okpala COR, Bono G, Abdulkadir A, Madumelu CU. Ozone (O3) process technology (OPT): An exploratory brief of minimal ozone discharge applied to shrimp product.  Energy Procedia 2015, 75, 2427–2435. [Google Scholar]
8.
Colmenares JC, Xu Y-J. (Eds.) Heterogeneous Photocatalysis From Fundamentals to Green Applications; Springer: Berlin/Heidelberg, Germany, 2016. doi:10.1007/978-3-662-48719-8.
9.
Pichat P. (Ed.) Photocatalysis: Fundamentals, Materials and Potential; MDPI: Basel, Switzerland, 2016.
10.
Alinsafi A, Evenou F, Abdulkarim E, Pons M-N, Zahraa O, Benhammou A, Yaacoubi A, Nejmeddine A. Treatment of textile industry wastewater by supported photocatalysis.  Dyes Pigm. 2007, 74, 439–445. [Google Scholar]
11.
M’Bra IC, Robert D, Keller N, Drogui P, Trokourey A. Photocatalytic Degradation of Myclobutanil and Its Commercial Formulation with TiO2 P25 in Slurry and TiO2/β-SiC Foams.  J. Nanosci. Nanotechnol. 2020, 20, 5938–5943. [Google Scholar]
12.
Shokri M, Isapour G, Behnajady MA, Dorosti S. A comparative study of photocatalytic degradation of the antibiotic cefazolin by suspended and immobilized TiO2 nanoparticles.  Desalin. Water Treat. 2016, 57, 12874–12881. [Google Scholar]
13.
Xing X, Du Z, Zhuang J, Wang D. Removal of ciprofloxacin from water by nitrogen doped TiO2 immobilized on glass spheres: Rapid screening of degradation products.  J. Photochem. Photobiol. A Chem. 2018, 359, 23–32. [Google Scholar]
14.
Chen L, Zheng K, Liu Y. Geopolymer-supported photocatalytic TiO2 film: Preparation and characterization.  Constr. Build. Mater. 2017, 151, 63–70. [Google Scholar]
15.
M’Bra IC, García-Muñoz P, Drogui P, Keller N, Trokourey A, Robert D. Heterogeneous photodegradation of Pyrimethanil and its commercial formulation with TiO2 immobilized on SiC foams.  J. Photochem. Photobiol. A Chem. 2019, 368, 1–6. [Google Scholar]
16.
M’Bra IC, Atheba GP, Robert D, Drogui P, Trokourey A. Photocatalytic Degradation of Paraquat Herbicide Using a Fixed Bed Reactor Containing TiO2 Nanoparticles Coated onto β-SiC Alveolar Foams.  Am. J. Anal. Chem. 2019, 10, 171–184. [Google Scholar]
17.
Allé PH, Fanou GD, Robert D, Adouby K, Drogui P. Photocatalytic degradation of Rhodamine B dye with TiO2 immobilized on SiC foam using full factorial design.  Appl. Water Sci. 2020, 10, 1–9. [Google Scholar]
18.
Jiang X, Manawan M, Feng T, Qian R, Zhao T, Zhou G, et al. Anatase and rutile in evonik aeroxide P25: Heterojunctioned or individual nanoparticles?  Catal. Today 2018, 300, 12–17. [Google Scholar]
19.
Marien CB, Le Pivert M, Azaïs A, M’Bra IC, Drogui P, Dirany A, et al. Kinetics and mechanism of Paraquat’s degradation: UV-C photolysis vs UV-C photocatalysis with TiO2/SiC foams.  J. Hazard. Mater. 2018, 370, 164–171. [Google Scholar]
20.
Pichat P, Vannier S, Dussaud J, Rubis JP. Field solar photocatalytic purification of pesticides-containing rinse waters from tractor cisterns used for grapevine treatment.  Sol. Energy 2004, 77, 533–542. [Google Scholar]
Creative Commons

© 2024 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (https://creativecommons.org/licenses/by/4.0/).