Article Open Access

Anisotropic Superelastic and Shape Memory Effect of Nitinol Manufactured by Electron Beam Powder Bed Fusion

Advanced Materials & Sustainable Manufacturing. 2024, 1(1), 10004; https://doi.org/10.35534/amsm.2024.10004
1
Joint Institute of Advanced Materials and Processes of Friedrich-Alexander Universität Erlangen-Nürnberg, Dr.-Mack-Straße 81, 90762 Fürth, Germany
2
Chair of Materials Science and Engineering for Metals of Friedrich-Alexander Universität Erlangen-Nürnberg, Martensstraße 5, 91058 Erlangen, Germany
*
Authors to whom correspondence should be addressed.

Received: 05 Mar 2024    Accepted: 02 Apr 2024    Published: 09 Apr 2024   

Abstract

This study explores the impact of energy input and build orientation on the anisotropic mechanical and functional properties of Ti-rich Nitinol (NiTi) produced via electron beam powder bed fusion (PBF-EB), integrated with layerwise in-situ monitoring of the melted surface via backscatter electron detection (ELO). NiTi, a binary alloy of nickel and titanium, exhibits shape memory and superelasticity, making it widely used in biomedical applications and sustainable technologies. PBF-EB, particularly with ELO, is highlighted for its advantages in producing crack-free NiTi with tailored microstructures. The investigation reveals that energy input significantly influences microstructure phases, with higher energy promoting increased evaporation of Ni and enhancing Ti-rich Ti2Ni precipitates, allowing for tailored material properties. Build orientation also proves crucial, impacting mechanical responses and functional properties. The 0° orientation yields the hardest mechanical response with the highest ultimate tensile strength (UTS) and the highest strain recovery ratio while the 45° orientation shows improved ductility but lower UTS. The influencing factors towards the formation of the anisotropic material properties are explained and the potential of tailoring the NiTi properties for specific applications by controlling energy input and build orientation in the PBF-EB process are underlined. These insights offer valuable criteria for designing innovative NiTi parts.

References

1.
Lagoudas DC. Shape Memory Alloys: Modeling and Engineering Applications; Springer: Boston, MA, USA, 2008.
2.
Farber E, Zhu J-N, Popovich A, Popovich V. A review of NiTi shape memory alloy as a smart material produced by additive manufacturing. Mater. Today Proc. 2020, 30, 761–767. [Google Scholar]
3.
Van Humbeeck J. Shape Memory Alloys: A Material and a Technology. Adv. Eng. Mater. 2001, 2001, 837–850. [Google Scholar]
4.
Alipour S, Taromian F, Ghomi ER, Zare M, Singh S, Ramakrishna S. Nitinol: From historical milestones to functional properties and biomedical applications, Proceedings of the Institution of Mechanical Engineers. Part H. J. Eng. Med. 2022, 236, 1595–1612. [Google Scholar]
5.
Hou H, Simsek E, Stasak D, Hasan NA, Qian S, Ott R, et al. Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat. Phys. D Appl. Phys. 2017, 50, 404001. [Google Scholar]
6.
Seigner J, Bezsmertna O, Fähler S, Tshikwand GK, Wendler F, Kohl M. Origami-Inspired Shape Memory Folding Microactuator. Appl. Mech. Mater. 2020, 64, 6. [Google Scholar]
7.
Abubakar RA, Wang F, Wang L. A review on Nitinol shape memory alloy heat engines. Smart Mater. Struct. 2021, 30, 13001. [Google Scholar]
8.
Elahinia M, Shayesteh Moghaddam N, Taheri Andani M, Amerinatanzi A, Bimber BA, Hamilton RF. Fabrication of NiTi through additive manufacturing: A review. Prog. Mater. Sci. 2016, 83, 630–663. [Google Scholar]
9.
Fink A, Fu Z, Körner C. Functional properties and shape memory effect of Nitinol manufactured via electron beam powder bed fusion. Materialia 2023, 30, 101823. [Google Scholar]
10.
Monu MC, Ekoi EJ, Hughes C, Kumar SS, Brabazon D. Resultant physical properties of as-built nitinol processed at specific volumetric energy densities and correlation with in-situ melt pool temperatures. J. Mater. Res. Technol. 2022, 21, 2757–2777. [Google Scholar]
11.
Wang X, Yu J, Liu J, Chen L, Yang Q, Wei H, et al. Effect of process parameters on the phase transformation behavior and tensile properties of NiTi shape memory alloys fabricated by selective laser melting. Addit. Manuf. 2020, 36, 101545. [Google Scholar]
12.
Zhou Q, Hayat MD, Chen G, Cai S, Qu X, Tang H, et al. Selective electron beam melting of NiTi: Microstructure, phase transformation and mechanical properties. Mater. Sci. Eng. 2019, 744, 290–298. [Google Scholar]
13.
Hassan MR, Mehrpouya M, Dawood S. Review of the Machining Difficulties of Nickel-Titanium Based Shape Memory Alloys. Appl. Mech. Mater. 2014, 564, 533–537. [Google Scholar]
14.
Lin Z, Surreddi KB, Hulme C, Dadbakhsh S, Rashid A. Influence of Electron Beam Powder Bed Fusion Process Parameters on Transformation Temperatures and Pseudoelasticity of Shape Memory Nickel Titanium. Adv. Eng. Mater. 2023, 25, 2201818. [Google Scholar]
15.
Pistor J, Breuning C, Körner C. A Single Crystal Process Window for Electron Beam Powder Bed Fusion Additive Manufacturing of a CMSX-4 Type Ni-Based Superalloy. Materials 2021, 14, 3785. [Google Scholar]
16.
Ramsperger M, Singer RF, Körner C. Microstructure of the Nickel-Base Superalloy CMSX-4 Fabricated by Selective Electron Beam Melting. Metall. Mater. Trans. A 2016, 47, 1469–1480. [Google Scholar]
17.
Arnold C, Pobel C, Osmanlic F, Körner C. Layerwise monitoring of electron beam melting via backscatter electron detection. RPJ 2018, 24, 1401–1406. [Google Scholar]
18.
Bäreis J, Semjatov N, Renner J, Ye J, Zongwen F, Körner C. Electron-optical in-situ crack monitoring during electron beam powder bed fusion of the Ni-Base superalloy CMSX-4. Prog. Addit. Manuf. 2023, 8, 801–806. [Google Scholar]
19.
Renner J, Grund J, Markl M, Körner C. A Ray Tracing Model for Electron Optical Imaging in Electron Beam Powder Bed Fusion. JMMP 2023, 7, 87. [Google Scholar]
20.
Krooß P, Lauhoff C, Gustmann T, Gemming T, Sobrero C, Ewald F, et al. Additive Manufacturing of Binary Ni–Ti Shape Memory Alloys Using Electron Beam Powder Bed Fusion: Functional Reversibility Through Minor Alloy Modification and Carbide Formation. Shap. Mem. Superelasticity 2022, 8, 452–462. [Google Scholar]
21.
Knörlein J, Franke MM, Schloffer M, Körner C. In-situ aluminum control for titanium aluminide via electron beam powder bed fusion to realize a dual microstructure. Addit. Manuf. 2022, 59, 103132. [Google Scholar]
22.
Dadbakhsh S, Vrancken B, Kruth J-P, Luyten J, van Humbeeck J. Texture and anisotropy in selective laser melting of NiTi alloy. Mater. Sci. Eng. 2016, 650, 225–232. [Google Scholar]
23.
Ferretto I, Kim D, Lee WJ, Hosseini E, Della Ventura NM, Sharma A, et al. Shape memory and mechanical properties of a Fe-Mn-Si-based shape memory alloy: Effect of crystallographic texture generated during additive manufacturing. Mater. Des. 2023, 229, 111928. [Google Scholar]
24.
Niendorf T, Brenne F, Krooß P, Vollmer M, Günther J, Schwarze D, et al. Microstructural Evolution and Functional Properties of Fe-Mn-Al-Ni Shape Memory Alloy Processed by Selective Laser Melting. Metall. Mater. Trans. A 2016, 47, 2569–2573. [Google Scholar]
25.
Saedi S, Shayesteh Moghaddam N, Amerinatanzi A, Elahinia M, Karaca HE. On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi. Acta Mater. 2018, 144, 552–560. [Google Scholar]
26.
Safaei K, Nematollahi M, Bayati P, Kordizadeh F, Andani MT, Abedi H, et al. On the crystallographic texture and torsional behavior of NiTi shape memory alloy processed by laser powder bed fusion: Effect of build orientation. Addit. Manuf. 2022, 59, 103184. [Google Scholar]
27.
Shi G, Li L, Yu Z, Sha P, Cao Q, Xu Z, et al. Effect of crystallographic anisotropy on phase transformation and tribological properties of Ni-rich NiTi shape memory alloy fabricated by LPBF. Opt. Laser Technol. 2023, 157, 108731. [Google Scholar]
28.
Wei S, Zhang J, Zhang L, Zhang Y, Song B, Wang X, et al. Laser powder bed fusion additive manufacturing of NiTi shape memory alloys: A review. Int. J. Extrem. Manuf. 2023, 5, 32001. [Google Scholar]
29.
Pobel CR, Arnold C, Osmanlic F, Fu Z, Körner C. Immediate development of processing windows for selective electron beam melting using layerwise monitoring via backscattered electron detection. Mater. Lett. 2019, 249, 70–72. [Google Scholar]
30.
Normenausschuss Materialprüfung (NMP). Prüfung Metallischer Werkstoffe—Zugproben 77.040.10, 50125; Beuth Verlag GmbH: Berlin, Germany, 2016.
31.
Normenausschuss Materialprüfung (NMP). Prüfung Von Metallischen Werkstoffen—Druckversuch an Metallischen Zellularen Werkstoffen 77.040.10, 50134; Beuth Verlag GmbH: Berlin, Germany, 2008.
32.
Fu J, Hu Z, Song X, Zhai W, Long Y, Li H, et al. Micro selective laser melting of NiTi shape memory alloy: Defects, microstructures and thermal/mechanical properties. Opt. Laser Technol. 2020, 131, 106374. [Google Scholar]
33.
Breuning C, Arnold C, Markl M, Körner C. A multivariate meltpool stability criterion for fabrication of complex geometries in electron beam powder bed fusion. Addit. Manuf. 2021, 45, 102051. [Google Scholar]
34.
Abas RA, Hayashi M, Seetharaman S. Thermal Diffusivity Measurements of CMSX-4 Alloy by the Laser-Flash Method. Int. J. Thermophys. 2007, 28, 109–122. [Google Scholar]
35.
Faulkner MG, Amalraj JJ, Bhattacharyya A. Experimental determination of thermal and electrical properties of Ni-Ti shape memory. Smart Mater. Struct. 2000, 5, 632–639. [Google Scholar]
36.
Tan C, Li S, Essa K, Jamshidi P, Zhou K, Ma W, et al. Laser Powder Bed Fusion of Ti-rich TiNi lattice structures: Process optimisation, geometrical integrity, and phase transformations. Int. J. Mach. Tools Manuf. 2019, 141, 19–29. [Google Scholar]
37.
Ono N, Satoh A, Ohta H. A Discussion on the Mechanical Properties of Shape Memory Alloys Based on a Polycrystal Model. Mater. Trans. JIM 1989, 30, 756–764. [Google Scholar]
38.
Mecking H, Kocks UF, Hartig C. Taylor factors in materials with many deformation modes. Scr. Mater. 1996, 35, 465–471. [Google Scholar]
39.
Laplanche G, Birk T, Schneider S, Frenzel J, Eggeler G. Effect of temperature and texture on the reorientation of martensite variants in NiTi shape memory alloys. Acta Mater. 2017, 127, 143–152. [Google Scholar]
40.
Otsuka K, Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 2005, 50, 511–678. [Google Scholar]
41.
Sridhar SK, Stebner AP, Rollett AD. Statistical variations in predicted martensite variant volume fractions in superelastically deformed NiTi modeled using habit plane variants versus correspondence variants. Int. J. Solids and Struct. 2021, 221, 60–76. [Google Scholar]
42.
Gall K. The role of texture in tension–compression asymmetry in polycrystalline NiTi. Int. J. Plast. 1999, 15, 69–92. [Google Scholar]
43.
Zhu YT, Liao XZ, Wu XL, Narayan J. Grain size effect on deformation twinning and detwinning. J. Mater. Sci. 2013, 48, 4467–4475. [Google Scholar]
44.
Ishida Y, Brown M. Dislocations in grain boundaries and grain boundary sliding. Acta Metall. 1967, 15, 857–860. [Google Scholar]
45.
Bartlett JL, Li X. An overview of residual stresses in metal powder bed fusion. Addit. Manuf. 2019, 27, 131–149. [Google Scholar]
46.
Denlinger ER, Gouge M, Irwin J, Michaleris P. Thermomechanical model development and in situ experimental validation of the Laser Powder-Bed Fusion process. Addit. Manuf. 2017, 16, 73–80. [Google Scholar]
47.
Sehitoglu H, Wu Y, Alkan S, Ertekin E. Plastic deformation of B2-NiTi—Is it slip or twinning? Philos. Mag. Lett. 2017, 97, 217–228. [Google Scholar]
Creative Commons

© 2024 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (https://creativecommons.org/licenses/by/4.0/).