Exploring Bi4V2O11 as Photoanode for Water Splitting with a Wide Range of Solar Light Capture and Suitable Band Potential

Photocatalysis: Research and Potential. 2024, 1(2), 10002; https://doi.org/10.35534/prp.2024.10002
Xin Zhao 1,2    Ningsi Zhang 3    Yang Yu 4    Tao Fang 3    Jun Hu 5 *    Jianyong Feng 3 *    Zhong Chen 1 *   
1
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
2
College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
3
Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Science, Nanjing University, Nanjing 210093, China
4
Energy Foundation China, No. 19 Jianguomenwai Dajie, Beijing 100004, China
5
School of Chemical Engineering, Northwest University, Xi’an 710069, China
*
Authors to whom correspondence should be addressed.

Received: 21 Feb 2024    Accepted: 08 Apr 2024    Published: 11 Apr 2024   

Abstract

Bi4V2O11 possesses a bandgap of ~1.9 eV, and the band positions of minimum conduction band and maximum valence band straddle the redox potentials of H+/H2 and O2/H2O. In the current work, photoanode made of particulate Bi4V2O11 film displays a wide range of light adsorption. However, when the anode was fabricated by drop-casting and examined for photoelectrochemical water splitting, the photocurrent density of the pristine Bi4V2O11 was low. Improvement has then been carried out by Mo-doping. The Mo-doped Bi4V2O11 photoanode achieves a maximum photocurrent density of 0.3 mA/cm2 after a post deposition necking treatment to improve the connectivity of the drop-cast particles in the film. This material also shows a stability with maintaining 80% photocurrent after 2 h test. Discussion has been made on the displayed performance in PEC water splitting of the Bi4V2O11 materials. Potential solutions have been proposed for this type of promising photoanode material for water splitting.

References

1.
Wang Z, Wu Q, Wang J, Yu Y. Surface modification by ligand growth strategy for dense copper bismuth film as photocathode to enhance hydrogen production activity. Front. Energy 2023, doi:10.1007/s11708-023-0893-5.
2.
Jun SE, Kim Y-H, Kim J, Cheon WS, Choi S, Yang J, et al. Atomically dispersed iridium catalysts on silicon photoanode for efficient photoelectrochemical water splitting. Nat. Commun. 2023, 14, 609. [Google Scholar]
3.
Wang X, Gong J, Dong Y, An S, Zhang X, Tian J. Energy band engineering of hydroxyethyl group grafted on the edge of 3D g-C3N4 nanotubes for enhanced photocatalytic H2 production. Mater. Today Phys. 2022, 27, 100806. [Google Scholar]
4.
Díez-García MI, Gómez R. Progress in ternary metal oxides as photocathodes for water splitting cells: optimization strategies.  Sol. RRL 2022, 6, 2100871. [Google Scholar]
5.
Hitoki G, Ishikawa A, Takata T, Kondo JN, Hara M, Domen K. Ta3N5 as a novel visible light-driven photocatalyst (λ < 600 nm). Chem. Lett. 2002, 31, 736–737. [Google Scholar]
6.
Kawase Y, Higashi T, Obata K, Sasaki Y, Katayama M, Domen K, et al. Interfacial design of a Ta3N5 thin-film photoanode for highly stable oxygen evolution over a wide pH range. ACS Sustain. Chem. Eng. 2022, 10, 14705–14714. [Google Scholar]
7.
Hara M, Hitoki G, Takata T, Kondo JN, Kobayashi H, Domen K. TaON and Ta3N5 as new visible light driven photocatalysts. Catal. Today 2003, 78, 555–560. [Google Scholar]
8.
Minegishi T, Nishimura N, Kubota J, Domen K. Photoelectrochemical properties of LaTiO2N electrodes prepared by particle transfer for sunlight-driven water splitting. Chem. Sci. 2013, 4, 1120–1124. [Google Scholar]
9.
Feng J, Luo W, Fang T, Lv H, Wang Z, Gao J, et al. Highly photo-responsive LaTiO2N photoanodes by improvement of charge carrier transport among film particles. Adv. Funct. Mater. 2014, 24, 3535–3542. [Google Scholar]
10.
Zhong Y, Li Z, Zhao X, Fang T, Huang H, Qian Q, et al. Enhanced water-splitting performance of perovskite SrTaO2N photoanode film through ameliorating interparticle charge transport. Adv. Funct. Mater. 2016, 26, 7156–7163. [Google Scholar]
11.
Kim Y-I, Si W, Woodward PM, Sutter E, Park S, Vogt T. Epitaxial thin-film deposition and dielectric properties of the perovskite oxynitride BaTaO2N. Chem. Mater. 2007, 19, 618–623. [Google Scholar]
12.
Li Z, Luo W, Zhang M, Feng J, Zou Z. Photoelectrochemical cells for solar hydrogen production: Current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ. Sci. 2013, 6, 347–370. [Google Scholar]
13.
Luo W, Yang Z, Li Z, Zhang J, Liu J, Zhao Z, et al. Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy Environ. Sci. 2011, 4, 4046–4051. [Google Scholar]
14.
Alexander BD, Kulesza PJ, Rutkowska I, Solarska R, Augustynski J. Metal oxide photoanodes for solar hydrogen production. J. Mater. Chem. 2008, 18, 2298–2303. [Google Scholar]
15.
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar]
16.
Cho IS, Han HS, Logar M, Park J, Zheng X. Enhancing low-bias performance of hematite photoanodes for solar water splitting by simultaneous reduction of bulk, interface, and surface recombination pathways. Adv. Energy Mater. 2016, 6, 1501840. [Google Scholar]
17.
Piekner Y, Ellis DS, Grave DA, Tsyganok A, Rothschild A. Wasted photons: Photogeneration yield and charge carrier collection efficiency of hematite photoanodes for photoelectrochemical water splitting. Energy Environ. Sci. 2021, 14, 4584–4598. [Google Scholar]
18.
Chen X, Liu J, Wang H, Ding Y, Sun Y, Yan H. One-step approach to novel Bi4V2O11 hierarchical hollow microspheres with high visible-light-driven photocatalytic activities. J. Mater. Chem. A 2013, 1, 877–883. [Google Scholar]
19.
Kumar S, Sahare PD. Photocatalytic activity of bismuth vanadate for the degradation of organic compounds. Nano 2013, 08, 1350007. [Google Scholar]
20.
Lv C, Chen G, Sun J, Zhou Y. Construction of α–β phase junction on Bi4V2O11 via electrospinning retardation effect and its promoted photocatalytic performance. Inorg. Chem. 2016, 55, 4782–4789. [Google Scholar]
21.
Ri C-N, Song-Gol K, Ju-Yong J, Pak S-N, Ri S-C, Ri J-H. Construction of the Bi2WO6/Bi4V2O11 heterojunction for highly efficient visible-light-driven photocatalytic reduction of Cr(vi). New J. Chem. 2018, 42, 647–653. [Google Scholar]
22.
Wen X-J, Qian L, Lv X-X, Sun J, Guo J, Fei Z-H, et al. Photocatalytic degradation of sulfamethazine using a direct Z-Scheme AgI/Bi4V2O11 photocatalyst: Mineralization activity, degradation pathways and promoted charge separation mechanism. J. Hazard. Mater. 2020, 385, 121508. [Google Scholar]
23.
Li J, Lu P, Deng W, Zeng Z, Lin L, Zhao G. Facile synthesis of sheet-like BiVO4/Bi4V2O11 composite for enhanced photocatalytic properties. Mater. Chem. Phys. 2020, 254, 123489. [Google Scholar]
24.
Lin Y, Cai H, Chen H, Luo H. One-pot synthesis of Bi4V2O11/BiVO4 heterostructure with enhanced photocatalytic activity for dye degradation. Appl. Surf. Sci. 2021, 544, 148921. [Google Scholar]
25.
dos Santos WS, Rodriguez M, Afonso AS, Mesquita JP, Nascimento LL, Patrocínio AOT, et al. A hole inversion layer at the BiVO4/Bi4V2O11 interface produces a high tunable photovoltage for water splitting. Sci. Rep. 2016, 6, 31406. [Google Scholar]
26.
dos Santos WS, Rodriguez M, Khoury JMO, Nascimento LA, Ribeiro RJP, Mesquita JP, et al. Bismuth vanadate photoelectrodes with high photovoltage as photoanode and photocathode in photoelectrochemical cells for water splitting. ChemSusChem 2018, 11, 589–597. [Google Scholar]
27.
Zhao X, Duan Z, Chen L. Bi-quantum-dot-decorated Bi4V2O11 hollow nanocakes: Synthesis, characterization, and application as photocatalysts for CO2 reduction. Ind. Eng. Chem. Res. 2019, 58, 10402–10409. [Google Scholar]
28.
Liu J, Ozawa K, Uezono N, Pawar SA, Suzuki S, Traoré A, et al. Electronic structure of orthorhombic Bi4V2O11 and role of gap states in photoelectrochemical water splitting. J. Chem. Phys. C 2023, 127, 11195–11203. [Google Scholar]
29.
Wang Y, Liang S, Zuo C, Fang H, Dong G, Sheng X, et al. Construction of a heterojunction with fast charge transport channels for photocatalytic hydrogen evolution via a synergistic strategy of Co-doping and crystal plane modulation. Nanoscale 2023, 15, 5230–5240. [Google Scholar]
30.
Wang Z, Zhang W, Song Y, Liu N, Chen L, An N, et al. Unraveling the site-selective doping mechanism in single-crystalline BiVO4 thin films for photoelectrochemical water splitting. J. Chem. Phys. C 2023, 127, 5775–5782. [Google Scholar]
31.
Feng J, Zhao X, Ma SSK, Wang D, Chen Z, Huang Y. Fast and simple construction of efficient solar-water-splitting electrodes with micrometer-sized light-absorbing precursor particles. Adv. Mater. Technol. 2016, 1, 1600119. [Google Scholar]
32.
Sayama K, Nomura A, Arai T, Sugita T, Abe R, Yanagida M, et al. Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment. J. Phys. Chem. B 2006, 110, 11352–11360. [Google Scholar]
33.
Zhang L, Song Y, Feng J, Fang T, Zhong Y, Li Z, et al. Photoelectrochemical water oxidation of LaTaON2 under visible-light irradiation. Int. J. Hydrogen Energy 2014, 39, 7697–7704. [Google Scholar]
34.
Higashi M, Domen K, Abe R. Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation. Energy Environ. Sci. 2011, 4, 4138–4147. [Google Scholar]
35.
Dotan H, Sivula K, Grätzel M, Rothschild A, Warren SC. Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ. Sci. 2011, 4, 958–964. [Google Scholar]
36.
Zhao X, Luo W, Feng J, Li M, Li Z, Yu T, et al. Quantitative analysis and visualized evidence for high charge separation efficiency in a solid-liquid bulk heterojunction. Adv. Energy Mater. 2014, 4, 1301785. [Google Scholar]
Creative Commons

© 2024 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (https://creativecommons.org/licenses/by/4.0/).