Review Open Access

TANGO1 Dances to Export of Procollagen from the Endoplasmic Reticulum

Fibrosis. 2023, 1(2), 10008;
Drexel University College of Medicine, Drexel University, Philadelphia, PA 19129, USA
Authors to whom correspondence should be addressed.

Received: 16 Oct 2023    Accepted: 07 Dec 2023    Published: 21 Dec 2023   


ABSTRACT: The endoplasmic reticulum (ER) to Golgi secretory pathway is an elegantly complex process whereby protein cargoes are manufactured, folded, and distributed from the ER to the cisternal layers of the Golgi stack before they are delivered to their final destinations. The export of large bulky cargoes such as procollagen and its trafficking to the Golgi is a sophisticated mechanism requiring TANGO1 (Transport ANd Golgi Organization protein 1. It is also called MIA3 (Melanoma Inhibitory Activity protein 3). TANGO1 has two prominent isoforms, TANGO1-Long and TANGO1-Short, and each isoform has specific functions. On the luminal side, TANGO1-Long has an HSP47 recruitment domain and uses this protein to collect collagen. It can also tether its paralog isoforms cTAGE5 and TALI and along with these proteins enlarges the vesicle to accommodate procollagen. Recent studies show that TANGO1-Long combines retrograde membrane flow with anterograde cargo transport. This complex mechanism is highly activated in fibrosis and promotes the excessive deposition of collagen in the tissues. The therapeutic targeting of TANGO1 may prove successful in the control of fibrotic disorders. This review focuses on TANGO1 and its complex interaction with other procollagen export factors that modulate increased vesicle size to accommodate the export of procollagen. 


Wootton SC, Kim DS, Kondoh Y, Chen E, Lee JS, Song JW, et al. Viral infection in acute exacerbation of idiopathic pulmonary fibrosis.  Am. J. Respir. Crit. Care Med. 2011, 183, 1698–1702. [Google Scholar]
Collazos J, Carton JA, Asensi V. Immunological status does not influence hepatitis c virus or liver fibrosis in HIV-hepatitis C virus-coinfected patients.  AIDS Res. Hum. Retroviruses 2011, 27, 383–389. [Google Scholar]
Olson PD, Kuechenmeister LJ, Anderson KL, Daily S, Beenken KE, Roux CM, et al. Small molecule inhibitors of Staphylococcus aureus RnpA alter cellular mRNA turnover, exhibit antimicrobial activity, and attenuate pathogenesis.  PLoS Pathog 2011, 7, e1001287. [Google Scholar]
Yarnold J, Brotons MC. Pathogenetic mechanisms in radiation fibrosis.  Radiother. Oncol. 2010, 97, 149–161. [Google Scholar]
Meltzer EB, Noble PW. Idiopathic pulmonary fibrosis.  Orphanet. J. Rare Dis. 2008, 3, 8. [Google Scholar]
Daba MH, El-Tahir KE, Al-Arifi MN, Gubara OA. Drug-induced pulmonary fibrosis.  Saudi Med. J. 2004, 25, 700–706. [Google Scholar]
Tirelli C, Pesenti C, Miozzo M, Mondoni M, Fontana L, Centanni S. The Genetic and Epigenetic Footprint in Idiopathic Pulmonary Fibrosis and Familial Pulmonary Fibrosis: A State-of-the-Art Review.  Diagnostics 2022, 12, 3107. [Google Scholar]
Mercier S, Küry S, Barbarot S. Hereditary Fibrosing Poikiloderma with Tendon Contractures, Myopathy, and Pulmonary Fibrosis. In GeneReviews®; University of Washington: Seattle, WA, USA, 1993.
Sisto M, Ribatti D, Lisi S.  Sjögren’s Syndrome-Related Organs Fibrosis: Hypotheses and Realities.  J. Clin. Med. 2022, 11, e51319. [Google Scholar]
Diesler R, Cottin V. Pulmonary fibrosis associated with rheumatoid arthritis: from pathophysiology to treatment strategies. Expert Rev. Respir. Med. 2022, 16, 541–553. [Google Scholar]
Case AH. Clinical Overview of Progressive Fibrotic Interstitial Lung Disease.  Front. Med. 2022, 9, 858339. [Google Scholar]
Liang C, Shi S, Meng Q, Liang D, Ji S, Zhang B, et al. Complex roles of the stroma in the intrinsic resistance to gemcitabine in pancreatic cancer: where we are and where we are going.  Exp. Mol. Med. 2017, 49, e406. [Google Scholar]
Blažević A, Hofland J, Hofland LJ, Feelders RA, de Herder WW. Small intestinal neuroendocrine tumours and fibrosis: an entangled conundrum.  Endocrine-Related Cancer 2018, 25, r115–r130. [Google Scholar]
Cupit-Link MC, Kirkland JL, Ness KK, Armstrong GT, Tchkonia T, LeBrasseur NK, et al. Biology of premature ageing in survivors of cancer.  ESMO Open 2017, 2, e000250. [Google Scholar]
Meng X, Wang H, Song X, Clifton AC, Xiao J. The potential role of senescence in limiting fibrosis caused by aging.  J. Cell Physiol. 2020, 235, 4046–4059. [Google Scholar]
Romano E, Rosa I, Fioretto BS, Matucci-Cerinic M, Manetti M. New Insights into Profibrotic Myofibroblast Formation in Systemic Sclerosis: When the Vascular Wall Becomes the Enemy.  Life 2021, 11, 610. [Google Scholar]
Tai Y, Woods EL, Dally J, Kong D, Steadman R, Moseley R, et al. Myofibroblasts: Function, Formation, and Scope of Molecular Therapies for Skin Fibrosis.  Biomolecules 2021, 11, 1095. [Google Scholar]
Romano E, Rosa I, Fioretto BS, Matucci-Cerinic M, Manetti M. The Role of Pro-fibrotic Myofibroblasts in Systemic Sclerosis: From Origin to Therapeutic Targeting.  Curr. Mol. Med. 2022, 22, 209–239. [Google Scholar]
Baek HA, Kim do S, Park HS, Jang KY, Kang MJ, Lee DG, et al. Involvement of endoplasmic reticulum stress in myofibroblastic differentiation of lung fibroblasts.  Am. J. Respir. Cell Mol. Biol. 2012, 46, 731–739. [Google Scholar]
Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA.  Nature 2002, 415, 92–96. [Google Scholar]
Moore BD, Jin RU, Lo H, Jung M, Wang H, Battle MA, et al. Transcriptional Regulation of X-Box-binding Protein One (XBP1) by Hepatocyte Nuclear Factor 4alpha (HNF4Alpha) Is Vital to Beta-cell Function.  J. Biol. Chem. 2016, 291, 6146–6157. [Google Scholar]
Huh WJ, Esen E, Geahlen JH, Bredemeyer AJ, Lee AH, Shi G, et al.  XBP1 controls maturation of gastric zymogenic cells by induction of MIST1 and expansion of the rough endoplasmic reticulum.  Gastroenterology 2010, 139, 2038–2049. [Google Scholar]
23. Lee AH, Chu GC, Iwakoshi NN, Glimcher LH. XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands.  Embo J. 2005, 24, 4368–4380. [Google Scholar]
Farhan H, Weiss M, Tani K, Kaufman RJ, Hauri HP. Adaptation of endoplasmic reticulum exit sites to acute and chronic increases in cargo load. Embo J. 2008, 27, 2043–2054. [Google Scholar]
Maiers JL, Kostallari E, Mushref M, deAssuncao TM, Li H, Jalan-Sakrikar N, et al. The unfolded protein response mediates fibrogenesis and collagen I secretion through regulating TANGO1 in mice.  Hepatology 2017, 65, 983–998. [Google Scholar]
Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C, et al. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks.  Mol. Cell 2007, 27, 53–66. [Google Scholar]
Mironov AA, Mironov AA Jr, Beznoussenko GV, Trucco A, Lupetti P, Smith JD, et al. ER-to-Golgi carriers arise through direct en bloc protrusion and multistage maturation of specialized ER exit domains.  Dev. Cell 2003, 5, 583–594. [Google Scholar]
Bannykh SI, Rowe T, Balch WE. The organization of endoplasmic reticulum export complexes.  J. Cell Biol. 1996, 135, 19–35. [Google Scholar]
Sato K. COPII coat assembly and selective export from the endoplasmic reticulum.  J. Biochem. 2004, 136, 755–760. [Google Scholar]
Lee MC, Orci L, Hamamoto S, Futai E, Ravazzola M, Schekman R. Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle.  Cell 2005, 122, 605–617. [Google Scholar]
Hutchings J, Stancheva V, Miller EA, Zanetti G. Subtomogram averaging of COPII assemblies reveals how coat organization dictates membrane shape.  Nat. Commun. 2018, 9, 4154. [Google Scholar]
Saito K, Chen M, Bard F, Chen S, Zhou H, Woodley D, et al. TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites.  Cell 2009, 136, 891–902. [Google Scholar]
Saito K, Maeda M. Not just a cargo receptor for large cargoes; an emerging role of TANGO1 as an organizer of ER exit sites.  J. Biochem. 2019, 166, 115–119. [Google Scholar]
Ma W, Goldberg J. TANGO1/cTAGE5 receptor as a polyvalent template for assembly of large COPII coats.  Proc. Natl. Acad. Sci. USA 2016, 113, 10061–10066. [Google Scholar]
Bonfanti L, Mironov AA Jr, Martínez-Menárguez JA, Martella O, Fusella A, Baldassarre M, et al. Procollagen traverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation.  Cell 1998, 95, 993–1003. [Google Scholar]
Raote I, Ortega-Bellido M, Santos AJ, Foresti O, Zhang C, Garcia-Parajo MF, et al. TANGO1 builds a machine for collagen export by recruiting and spatially organizing COPII, tethers and membranes.  eLife 2018, 7, e32723. [Google Scholar]
Arnolds O, Stoll R. A new fold in TANGO1 evolved from SH3 domains for the export of bulky cargos. BioRxiv 2022, doi:10.1101/2022.02.02.478833.
Ferreira LR, Norris K, Smith T, Hebert C, Sauk JJ. Association of Hsp47, Grp78, and Grp94 with procollagen supports the successive or coupled action of molecular chaperones.  J. Cell Biochem. 1994, 56, 518–526. [Google Scholar]
Omari S, Makareeva E, Gorrell L, Jarnik M, Lippincott-Schwartz J, Leikin S. Mechanisms of procollagen and HSP47 sorting during ER-to-Golgi trafficking.  Matrix Biol. 2020, 93, 79–94. [Google Scholar]
Maeda M, Saito K, Katada T. Distinct isoform-specific complexes of TANGO1 cooperatively facilitate collagen secretion from the endoplasmic reticulum.  Mol. Biol. Cell 2016, 27, 2688–2696. [Google Scholar]
Santos AJ, Nogueira C, Ortega-Bellido M, Malhotra V. TANGO1 and Mia2/cTAGE5 (TALI) cooperate to export bulky pre-chylomicrons/VLDLs from the endoplasmic reticulum.  J. Cell Biol. 2016, 213, 343–354. [Google Scholar]
Reynolds HM, Zhang L, Tran DT, Ten Hagen KG. Tango1 coordinates the formation of endoplasmic reticulum/Golgi docking sites to mediate secretory granule formation.  J. Biol. Chem. 2019, 294, 19498–19510. [Google Scholar]
Raote I, Ortega Bellido M, Pirozzi M, Zhang C, Melville D, Parashuraman S, et al. TANGO1 assembles into rings around COPII coats at ER exit sites.  J. Cell Biol. 2017, 216, 901–909. [Google Scholar]
Tanabe T, Maeda M, Saito K, Katada T. Dual function of cTAGE5 in collagen export from the endoplasmic reticulum.  Mol. Biol. Cell 2016, 27, 2008–2013. [Google Scholar]
King R, Lin Z, Balbin-Cuesta G, Myers G, Friedman A, Zhu G, et al. SEC23A rescues SEC23B-deficient congenital dyserythropoietic anemia type II.  Sci. Adv. 2021, 7, eabj5293. [Google Scholar]
Boyadjiev SA, Fromme JC, Ben J, Chong SS, Nauta C, Hur DJ, et al. Cranio-lenticulo-sutural dysplasia is caused by a SEC23A mutation leading to abnormal endoplasmic-reticulum-to-Golgi trafficking.  Nat. Genet. 2006, 38, 1192–1197. [Google Scholar]
Boyadjiev SA, Kim SD, Hata A, Haldeman-Englert C, Zackai EH, Naydenov C, et al. Cranio-lenticulo-sutural dysplasia associated with defects in collagen secretion.  Clin. Genet. 2011, 80, 169–176. [Google Scholar]
Zhu M, Tao J, Vasievich MP, Wei W, Zhu G, Khoriaty RN, et al. Neural tube opening and abnormal extraembryonic membrane development in SEC23A deficient mice.  Sci. Rep. 2015, 5, 15471. [Google Scholar]
Lu CL, Ortmeier S, Brudvig J, Moretti T, Cain J, Boyadjiev SA, et al. Collagen has a unique SEC24 preference for efficient export from the endoplasmic reticulum.  Traffic 2022, 23, 81–93. [Google Scholar]
Schmidt K, Cavodeassi F, Feng Y, Stephens DJ. Early stages of retinal development depend on Sec13 function.  Biol. Open 2013, 2, 256–266. [Google Scholar]
Niu X, Gao C, Jan Lo L, Luo Y, Meng C, Hong J, et al. Sec13 safeguards the integrity of the endoplasmic reticulum and organogenesis of the digestive system in zebrafish.  Dev. Biol. 2012, 367, 197–207. [Google Scholar]
Moreira TG, Zhang L, Shaulov L, Harel A, Kuss SK, Williams J, et al. Sec13 Regulates Expression of Specific Immune Factors Involved in Inflammation In Vivo.  Sci. Rep. 2015, 5, 17655. [Google Scholar]
Krupp M, Marquardt JU, Sahin U, Galle PR, Castle J, Teufel A. RNA-Seq Atlas--a reference database for gene expression profiling in normal tissue by next-generation sequencing.  Bioinformatics 2012, 28, 1184–1185. [Google Scholar]
Halperin D, Kadir R, Perez Y, Drabkin M, Yogev Y, Wormser O, et al. SEC31A mutation affects ER homeostasis, causing a neurological syndrome.  J. Med. Genet. 2019, 56, 139–148. [Google Scholar]
Townley AK, Feng Y, Schmidt K, Carter DA, Porter R, Verkade P, et al. Efficient coupling of Sec23-Sec24 to Sec13-Sec31 drives COPII-dependent collagen secretion and is essential for normal craniofacial development.  J. Cell Sci. 2008, 121, 3025–3034. [Google Scholar]
Jin L, Pahuja KB, Wickliffe KE, Gorur A, Baumgartel C, Schekman R, et al. Ubiquitin-dependent regulation of COPII coat size and function.  Nature 2012, 482, 495–500. [Google Scholar]
Asmar AJ, Beck DB, Werner A. Control of craniofacial and brain development by Cullin3-RING ubiquitin ligases: Lessons from human disease genetics.  Exp. Cell Res. 2020, 396, 112300. [Google Scholar]
Moretti T, Kim K, Tuladhar A, Kim J.  KLHL12 can form large COPII structures in the absence of CUL3 neddylation.  Mol. Biol. Cell 2023, 34, br4. [Google Scholar]
McGourty CA, Akopian D, Walsh C, Gorur A, Werner A, Schekman R, et al. Regulation of the CUL3 Ubiquitin Ligase by a Calcium-Dependent Co-adaptor. Cell 2016, 167, 525–538.e514. [Google Scholar]
Akopian D, McGourty CA, Rapé M. Co-adaptor driven assembly of a CUL3 E3 ligase complex.  Mol. Cell 2022, 82, 585–597.e511. [Google Scholar]
Follonier Castella L, Gabbiani G, McCulloch CA, Hinz B. Regulation of myofibroblast activities: calcium pulls some strings behind the scene.  Exp. Cell Res. 2010, 316, 2390–2401. [Google Scholar]
Malhotra V, Erlmann P. The pathway of collagen secretion.  Ann. Rev. Cell Dev. Biol. 2015, 31, 109–124. [Google Scholar]
Venditti R, Scanu T, Santoro M, Di Tullio G, Spaar A, Gaibisso R, et al. Sedlin controls the ER export of procollagen by regulating the Sar1 cycle.  Science 2012, 337, 1668–1672. [Google Scholar]
Saito K, Yamashiro K, Shimazu N, Tanabe T, Kontani K, Katada T. Concentration of Sec12 at ER exit sites via interaction with cTAGE5 is required for collagen export.  J. Cell Biol. 2014, 206, 751–762. [Google Scholar]
Jones B, Jones EL, Bonney SA, Patel HN, Mensenkamp AR, Eichenbaum-Voline S, et al. Mutations in a Sar1 GTPase of COPII vesicles are associated with lipid absorption disorders. Nat. Genet. 2003, 34, 29–31. [Google Scholar]
Melville DB, Studer S, Schekman R. Small sequence variations between two mammalian paralogs of the small GTPase SAR1 underlie functional differences in coat protein complex II assembly.  J. Biol. Chem. 2020, 295, 8401–8412. [Google Scholar]
Sané A, Ahmarani L, Delvin E, Auclair N, Spahis S, Levy E. SAR1B GTPase is necessary to protect intestinal cells from disorders of lipid homeostasis, oxidative stress, and inflammation.  J. Lipid Res. 2019, 60, 1755–1764. [Google Scholar]
Levic DS, Minkel JR, Wang WD, Rybski WM, Melville DB, Knapik EW. Animal model of Sar1b deficiency presents lipid absorption deficits similar to Anderson disease.  J. Mol. Med. 2015, 93, 165–176. [Google Scholar]
Yuan L, Kenny SJ, Hemmati J, Xu K, Schekman R. TANGO1 and SEC12 are co-packaged with procollagen I to facilitate the generation of large COPII carriers.  Proc. Natl. Acad. Sci. USA 2018, 115, e12255–e12264. [Google Scholar]
Saito K, Yamashiro K, Ichikawa Y, Erlmann P, Kontani K, Malhotra V, et al. cTAGE5 mediates collagen secretion through interaction with TANGO1 at endoplasmic reticulum exit sites.  Mol. Biol. Cell 2011, 22, 2301–2308. [Google Scholar]
Santos AJ, Raote I, Scarpa M, Brouwers N, Malhotra V. TANGO1 recruits ERGIC membranes to the endoplasmic reticulum for procollagen export.  eLife 2015, 4, e10982. [Google Scholar]
Kreiner T, Moore HP. Membrane traffic between secretory compartments is differentially affected during mitosis.  Cell Regul. 1990, 1, 415–424. [Google Scholar]
Hughes H, Stephens DJ. Sec16A defines the site for vesicle budding from the endoplasmic reticulum on exit from mitosis.  J. Cell Sci. 2010, 123, 4032–4038. [Google Scholar]
Maeda M, Katada T, Saito K. TANGO1 recruits Sec16 to coordinately organize ER exit sites for efficient secretion.  J. Cell Biol. 2017, 216, 1731–1743. [Google Scholar]
Maeda M, Komatsu Y, Saito K. Mitotic ER Exit Site Disassembly and Reassembly Are Regulated by the Phosphorylation Status of TANGO1.  Dev. Cell 2020, 55, 237–250. [Google Scholar]
Connolly LM, McFalls CM, McMahon IG, Bhat AM, Artlett CM. Caspase-1 Enhances TANGO1 Expression to Promote Procollagen Export from the Endoplasmic Reticulum in Systemic Sclerosis Contributing to Fibrosis.  Arthritis Rheum. 2023, 75, 1831–1841. [Google Scholar]
Varga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder.  J. Clin. Invest. 2007, 117, 557–567. [Google Scholar]
Abraham DJ, Eckes B, Rajkumar V, Krieg T. New developments in fibroblast and myofibroblast biology: implications for fibrosis and scleroderma.  Curr. Rheum. Rep. 2007, 9, 136–143. [Google Scholar]
Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling.  Nat. Rev. 2002, 3, 349–363. [Google Scholar]
Kirk TZ, Mark ME, Chua CC, Chua BH, Mayes MD. Myofibroblasts from scleroderma skin synthesize elevated levels of collagen and tissue inhibitor of metalloproteinase (TIMP-1) with two forms of TIMP-1.  J. Biol. Chem. 1995, 270, 3423–3428. [Google Scholar]
Junkiert-Czarnecka A, Pilarska-Deltow M, Bąk A, Heise M, Haus O. A novel mutation in collagen transport protein, MIA3 gene, detected in a patient with clinical symptoms of Ehlers-Danlos hypermobile syndrome.  Adv. Clin. Exp. Med. 2023, 32, 777–781. [Google Scholar]
Lekszas C, Foresti O, Raote I, Liedtke D, König EM, Nanda I, et al. Biallelic TANGO1 mutations cause a novel syndromal disease due to hampered cellular collagen secretion.  eLife 2020, 9, e51319. [Google Scholar]
Guillemyn B, Nampoothiri S, Syx D, Malfait F, Symoens S. Loss of TANGO1 Leads to Absence of Bone Mineralization.  JBMR Plus 2021, 5, e10451. [Google Scholar]
Clark EM, Link BA. Complementary and divergent functions of zebrafish Tango1 and Ctage5 in tissue development and homeostasis.  Mol. Biol. Cell 2021, 32, 391–401. [Google Scholar]
Wilson DG, Phamluong K, Li L, Sun M, Cao TC, Liu PS, et al. Global defects in collagen secretion in a Mia3/TANGO1 knockout mouse.  J. Cell Biol. 2011, 193, 935–951. [Google Scholar]
Christen M, Booij-Vrieling H, Oksa-Minalto J, de Vries C, Kehl A, Jagannathan V, et al. MIA3 Splice Defect in Cane Corso Dogs with Dental-Skeletal-Retinal Anomaly (DSRA).  Genes 2021, 12, 1497. [Google Scholar]
Wanbiao Z, Jing M, Shi Z, Chen T, Zhao X, Li H. MIA3 promotes the degradation of GSH (glutathione) by binding to CHAC1, thereby promoting the progression of hepatocellular carcinoma. Mol. Cell Biochem. 2023, doi:10.1007/s11010-023-04850-9.
Man J, Zhou W, Zuo S, Zhao X, Wang Q, Ma H, et al. TANGO1 interacts with NRTN to promote hepatocellular carcinoma progression by regulating the PI3K/AKT/mTOR signaling pathway.  Biochem. Pharmacol. 2023, 213, 115615. [Google Scholar]
Liu M, Feng Z, Ke H, Liu Y, Sun T, Dai J, et al. Tango1 spatially organizes ER exit sites to control ER export.  J. Cell Biol. 2017, 216, 1035–1049. [Google Scholar]
Yang K, Liu M, Feng Z, Rojas M, Zhou L, Ke H, et al. ER exit sites in Drosophila display abundant ER-Golgi vesicles and pearled tubes but no megacarriers.  Cell Rep. 2021, 36, 109707. [Google Scholar]
McCaughey J, Stevenson NL, Mantell JM, Neal CR, Paterson A, Heesom K, et al. A general role for TANGO1, encoded by MIA3, in secretory pathway organization and function.  J. Cell Sci. 2021, 134, jcs259075. [Google Scholar]
Creative Commons

© 2024 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (