Select an item
All journals
All journals
Blood and Genomics
Intelligent and Sustainable Manufacturing
Perspectives in Legal and Forensic Sciences
Rural and Regional Development
Intelligent Rehabilitation and Engineering
Green Chemical Technology
Smart Energy System Research
Drones and Autonomous Vehicles
Sustainable Polymer & Energy
Lifespan Development and Mental Health
Ecological Civilization
Clean Energy and Sustainability
Advanced Materials & Sustainable Manufacturing
Immune Discovery
Nature Anthropology
Hydroecology and Engineering
High-Temperature Materials
Synthetic Biology and Engineering
Fibrosis
Ecology and Diversity
Marine Energy Research
Cardiovascular Science
Journal of Respiratory Biology and Translational Medicine
Photocatalysis: Research and Potential
Sort by

Found 1 results

Article

25 September 2023

Anion Exchange Membrane Reinforced with Polyethylene Substrate for Alkaline Fuel Cell Applications

To enhance mechanical robustness of our in-house anion exchange membrane (QPAF-4), the reinforcement technique was applied using ozone-treated, porous polyethylene (PE) thin film (Toray SETELA) as a substrate. Homogenous and flexible reinforced membranes (QPAF-4-PE, 15–20 µm thick) were obtained by bar-coating method. The cross-sectional SEM image and EDS analysis revealed triple-layered (sandwich-like) structure without detectable pinholes. The QPAF-4-PE with ion exchange capacity (IEC) of 1.48 meq·g−1 exhibited lower water uptake (15 wt% at 90% relative humidity) and slightly lower hydroxide ion conductivity (71 mS·cm−1 at 80 ℃) than those of the pristine QPAF-4 (IEC = 1.84 meq·g−1, 25 wt% water uptake and 82 mS·cm−1 of the conductivity). The reinforced QPAF-4-PE exhibited slightly higher viscoelasticity (particularly, in MD direction) due to the suppressed water absorbability. Furthermore, the elongation at break increased by 9.8% in TD direction and 6.3% in MD direction. An H2/O2 fuel cell using QPAF-4-PE as membrane was investigated at different back-pressure, in which the cell with 100 kPa back-pressure onto the cathode side only achieved the maximum performance (176 mW·cm−2 at current density of 364 mA·cm−2) and the longest durability for (>200 h) at a constant current density of 100 mA·cm−2 maintaining 0.43 V of the cell voltage (67% remaining). The durability was eight times longer than that with ambient pressure and two times longer than that with back-pressure on both sides.

Keywords: Reinforced composite membranes (RCMs), Anion exchange membranes, Hydroxide ion conductivity, Alkaline stability, Alkaline fuel cells, In-situ durability
TOP