Article Open Access

The Priority of Nature-based over Engineered Negative Emission Technologies: Locating BECCS and DACCS within the Hierarchy of International Climate Law

Ecological Civilization. 2024, 1(1), 10004; https://doi.org/10.35534/ecolciviliz.2023.10004
Philipp Günther 1,2    Felix Ekardt 1,3 *   
1
Research Unit Sustainability and Climate Policy, 04229 Leipzig, Germany
2
WZB Berlin Social Science Center, 10785 Berlin, Germany
3
Faculty of Law and Interdisciplinary Faculty, University of Rostock, 18051 Rostock, Germany
*
Authors to whom correspondence should be addressed.

Received: 12 Apr 2023    Accepted: 21 Aug 2023    Published: 01 Sep 2023   

(This article belongs to the Topic Collection Comparative Environmental Law)

Abstract

Drastically reducing emissions is essential to achieve the Paris Agreement’s (PA) goal of keeping global temperature well below 2 °C, ideally at 1.5 °C. With regard to residual emissions, however, a demand for negative emission technologies (NETs), also known as carbon dioxide removal (CDR), remains. NETs are particularly necessary to reach net-zero goals by offsetting emissions in hard-to-abate sectors. This article examines the distinction between “engineered” and “nature-based” removals from the perspective of international climate change law. To that end, the relevant legal norms in the United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto Protocol (KP), and the PA are interpreted—with a particular emphasis on two engineered removals: bioenergy with carbon capture and storage (BECCS) and direct air carbon capture and storage (DACCS). We posit that the three treaties establish a normative hierarchy that is more favorable towards so-called nature-based removals and less favorable to engineered removals (and even more favorable towards emission reductions).

References

1.
Intergovernmental Panel on Climate Change (IPCC). Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2022. Available online: https://www.ipcc.ch/report/ar6/wg3/ (accessed on 11 April 2023).
2.
Weishaupt A, Ekardt F, Garske B, Stubenrauch J, Wieding J. Land Use, Livestock, Quantity Governance, and Economic Instruments-Sustainability beyond Big Livestock Herds and Fossil Fuels.  Sustainability 2020, 12, 2053. [Google Scholar]
3.
Ekardt F, Wieding J, Zorn A. Paris Agreement, Precautionary Principle and Human Rights: Zero Emissions in Two Decades?  Sustainability 2018, 10, 2812. [Google Scholar]
4.
United Nations Environment Programme (UNEP). Emissions Gap Report 2022: The Closing Window—Climate Crisis Calls for Rapid Transformation of Societies; UNEP: Nairobi, Kenya, 2022. Available online: https://www.unep.org/resources/emissions-gap-report-2022/ (accessed on 11 April 2023).
5.
UNEP. The Production Gap Report 2021. UNEP: Nairobi, Kenya, 2021. Available online: https://www.unep.org/resources/report/production-gap-report-2021 (accessed on 11 April 2023).
6.
Proelß A, Steenkamp RC. Geoengineering: Methods, Associated Risks and International Liability. In Corporate Liability for Transboundary Environmental Harm; Springer International Publishing: Cham, Switzerland, 2023; pp. 419–503.
7.
Craik AN, Burns WCG. Climate Engineering Under the Paris Agreement: A Legal and Policy Primer; Centre for International Governance Innovation: Waterloo, ON, Canada, 2016; pp. 1–24. Available online: https://www.cigionline.org/static/documents/documents/GeoEngineering%20Primer%20-%20Special%20Report.pdf (accessed on 11 April 2023).
8.
Fuss S, Lamb WF, Callaghan MW, Hilaire J, Creutzig F, Amann T, et al. Negative Emissions – Part 2: Costs, Potentials and Side Effects.  Environ. Res. Lett. 2018, 13, 1–47. [Google Scholar]
9.
Fuss S. Comparison of Technologies and Practices for Removing Carbon Dioxide from the Atmosphere. In Greenhouse Gas Removal Technologies; Royal Society of Chemistry: London, UK, 2022; pp. 351–377.
10.
Geden O, Peters GP, Scott V. Targeting Carbon Dioxide Removal in the European Union.  Clim. Policy 2019, 19, 487–494. [Google Scholar]
11.
Morrow D, Thompson MS, Anderson A, Batres M, Buck HJ, Dooley K, et al. Principles for Thinking about Carbon Dioxide Removal in Just Climate Policy.  One Earth 2020, 3, 150–153. [Google Scholar]
12.
Stubenrauch J, Ekardt F, Hagemann K, Garske B. Forest Governance: Overcoming Trade-Offs between Land-Use Pressures, Climate and Biodiversity Protection; Springer International Publishing: Cham, Switzerland, 2022.
13.
Wieding J, Stubenrauch J, Ekardt F. Human Rights and Precautionary Principle: Limits to Geoengineering, SRM, and IPCC Scenarios.  Sustainability 2020, 12, 8858. [Google Scholar]
14.
Boettcher M, Schenuit F, Geden O. The Formative Phase of German Carbon Dioxide Removal Policy: Positioning between Precaution, Pragmatism and Innovation.  Energy Res. Soc. Sci. 2023, 98, 103018. [Google Scholar]
15.
Wenger A. Public Perception and Acceptance of Negative Emission Technologies: Framing Effects in Switzerland.  Clim. Change 2021, 167, 1–20. [Google Scholar]
16.
Ozkan M, Nayak SP, Ruiz AD, Jiang W.  Current Status and Pillars of Direct Air Capture Technologies.  iScience 2022, 25, 103990. [Google Scholar]
17.
Joppa L, Luers A, Willmott E, Friedmann SJ, Hamburg SP, Broze R. Microsoft’s Million-Tonne CO2-Removal Purchase – Lessons for Net Zero.  Nature 2021, 597, 629–632. [Google Scholar]
18.
Günther P, Ekardt F. Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment.  Land 2022, 11, 2153. [Google Scholar]
19.
Burns WCG. Human Rights Dimensions of Bioenergy with Carbon Capture and Storage: A Framework for Climate Justice in the Realm of Climate Geoengineering. In Climate Justice: Case Studies in Global and Regional Governance Challenges; Environmental Law Institute: Washington, DC, USA, 2017; pp. 149–170.
20.
Reynolds JL. International Law. In Climate Engineering and the Law: Regulation and Liability for Solar Radiation Management and Carbon Dioxide Removal; Cambridge University Press: Cambridge, UK, 2018; pp. 57–153.
21.
Schwieger S, Kreyling J, Peters B, Gillert A, Freiherr von Lukas U, Jurasinski G, et al. Rewetting Prolongs Root Growing Season in Minerotrophic Peatlands and Mitigates Negative Drought Effects.  J. Appl. Ecol. 2022, 59, 2106–2116. [Google Scholar]
22.
Schwieger S, Kreyling J, Couwenberg J, Smiljanić M, Weigel R, Wilmking M, et al. Wetter Is Better: Rewetting of Minerotrophic Peatlands Increases Plant Production and Moves Them Towards Carbon Sinks in a Dry Year.  Ecosystems 2021, 24, 1093–1109. [Google Scholar]
23.
Folkard‐Tapp H, Banks‐Leite C, Cavan EL. Nature‐based Solutions to Tackle Climate Change and Restore Biodiversity.  J. Appl. Ecol. 2021, 58, 2344–2348. [Google Scholar]
24.
German Federal Ministry for Economic Affairs and Climate Action (BMWK). Evaluierungsbericht der Bundesregierung zum Kohlendioxid-Speicherungsgesetz (KSpG); BMWK: Berlin, Germany, 2022. Available online: https://www.bmwk.de/Redaktion/DE/Downloads/Energiedaten/evaluierungsbericht-bundesregierung-kspg.html (accessed on 11 April 2023).
25.
Ekardt F, Jacobs B, Stubenrauch J, Garske B. Peatland Governance: The Problem of Depicting in Sustainability Governance, Regulatory Law, and Economic Instruments.  Land 2020, 9, 83. [Google Scholar]
26.
Stubenrauch J, Garske B, Ekardt F, Hagemann K. European Forest Governance: Status Quo and Optimising Options with Regard to the Paris Climate Target.  Sustainability 2022, 14, 4365. [Google Scholar]
27.
Krüger HRJ. Geoengineering und Völkerrecht: Ein Beitrag zur Regulierung des klimabezogenen Geoengineerings; Mohr Siebeck: Tübingen, Germany, 2020.
28.
Honegger M, Burns W, Morrow DR. Is Carbon Dioxide Removal ‘Mitigation of Climate Change’?  Rev. Eur. Comp. Int. Environ. Law 2021, 30, 327–335. [Google Scholar]
29.
Ekardt F. Sustainability: Transformation, Governance, Ethics, Law; Springer International Publishing: Cham, Switzerland, 2020
30.
Stoll P-T, Krüger HRJ. Klimawandel. In Internationales Umweltrecht; De Gruyter: Berlin, Germany, 2022; pp. 423–473.
31.
Ekardt F, Bärenwaldt M, Heyl K. The Paris Target, Human Rights, and IPCC Weaknesses: Legal Arguments in Favour of Smaller Carbon Budgets.  Environments 2022, 9, 112. [Google Scholar]
32.
Ekardt F, Roos P, Bärenwaldt M, Nesselhauf L. Energy Charter Treaty: Towards a New Interpretation in the Light of Paris Agreement and Human Rights.  Sustainability 2023, 15, 5006. [Google Scholar]
33.
Osaka S, Bellamy R, Castree N. Framing “Nature‐based” Solutions to Climate Change.  WIREs Clim. Change 2021, 12, e729. [Google Scholar]
34.
Markusson N. Natural Carbon Removal as Technology.  WIREs Clim. Change 2022, 113, e767. [Google Scholar]
35.
Fajardy M. Bioenergy with Carbon Capture and Storage (BECCS). In Greenhouse Gas Removal Technologies; Royal Society of Chemistry: London, UK, 2022; pp. 80–114.
36.
Shahbaz M, Alnouss A, Ghiat I, Mckay G, Mackey H, Elkhalifa S, et al. Resources, Conservation & Recycling: A Comprehensive Review of Biomass Based Thermochemical Conversion Technologies Integrated with CO2 Capture and Utilisation within BECCS Networks.  Resour. Conserv. Recycl. 2021, 173, 1–25. [Google Scholar]
37.
Fajardy M, Koberle A, Mac Dowell N, Fantuzzi A. BECCS deployment: a reality check.  Grantham Inst. Brief. Pap. 2019, 28, 1–14. [Google Scholar]
38.
Gough C, Upham P. Biomass Energy with Carbon Capture and Storage (BECCS or Bio-CCS).  Greenh. Gases Sci. Technol. 2011, 2, 352–368. [Google Scholar]
39.
Azar C, Johansson DJA, Mattsson N. Meeting Global Temperature Targets – The Role of Bioenergy with Carbon Capture and Storage.  Environ. Res. Lett. 2013, 8, 1–8. [Google Scholar]
40.
Herzog H. Direct Air Capture. In Greenhouse Gas Removal Technologies; Royal Society of Chemistry: London, UK, 2022; pp. 115–137.
41.
Ozkan M. Direct Air Capture of CO2: A Response to Meet the Global Climate Targets.  MRS Energy Sustain. 2021, 20, 1–6. [Google Scholar]
42.
Lackner KS. The Use of Artificial Trees. In Geoengineering of the Climate System; Royal Society of Chemistry: London, UK, 2014; pp. 80–104.
43.
Gambhir A, Tavoni M. Direct Air Carbon Capture and Sequestration: How It Works and How It Could Contribute to Climate-Change Mitigation.  One Earth 2019, 1, 405–409. [Google Scholar]
44.
Celia MA, Bachu S, Nordbotten JM, Bandilla KW. Status of CO2 Storage in Deep Saline Aquifers with Emphasis on Modeling Approaches and Practical Simulations.  Water Resour. Res. 2015, 51, 6846–6892. [Google Scholar]
45.
Van Der Zwaan B, Smekens K. CO2 Capture and Storage with Leakage in an Energy-Climate Model.  Environ. Model. Assess. 2009, 14, 135–148. [Google Scholar]
46.
Yang F, Bai B, Tang D, Dunn-Norman S, Wronkiewicz D. Characteristics of CO2 Sequestration in Saline Aquifers.  Pet. Sci. 2010, 7, 83–92. [Google Scholar]
47.
Leung DYC, Caramanna G, Maroto-Valer MM. An Overview of Current Status of Carbon Dioxide Capture and Storage Technologies.  Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar]
48.
Otto A, Grube T, Schiebahn S, Stolten D. Closing the Loop: Captured CO2 as a Feedstock in the Chemical Industry.  Energy Environ. Sci. 2015, 8, 3283–3297. [Google Scholar]
49.
Quadrelli EA, Centi G, Duplan JL, Perathoner S. Carbon Dioxide Recycling: Emerging Large-Scale Technologies with Industrial Potential.  ChemSusChem 2011, 4, 1194–1215. [Google Scholar]
50.
Balaman SY. Decision-Making for Biomass-Based Production Chains: The Basic Concepts and Methodologies; Academic Press: London, UK, 2019.
51.
Sanchez J, Dolores MC, Robert N, Fernández J. Biomass Resources. In The Role of Bioenergy in the Emerging Bioeconomy: Resources, Technologies, Sustainability and Policy; Academic Press: London, UK, 2018; pp. 25–111
52.
Turner PA, Field CB, Lobell DB, Sanchez DL, Mach KJ. Unprecedented Rates of Land-Use Transformation in Modelled Climate Change Mitigation Pathways.  Nat. Sustain. 2018, 1, 240–245. [Google Scholar]
53.
Hennig B. Nachhaltige Landnutzung und Bioenergie; Metropolis Verlag: Marburg, Germany, 2017.
54.
Jansen D, Gazzani M, Manzolini G, van Dijk E, Carbo M. Pre-Combustion CO2 Capture.  Int. J. Greenh. Gas Control 2015, 40, 167–187. [Google Scholar]
55.
Kanniche M, Gros-Bonnivard R, Jaud P, Valle-Marcos J, Amann JM, Bouallou C. Pre-Combustion, Post-Combustion and Oxy-Combustion in Thermal Power Plant for CO2 Capture.  Appl. Therm. Eng. 2010, 30, 53–62. [Google Scholar]
56.
Finney KN, Chalmers H, Lucquiaud M, Riaza J, Szuhánszki J, Buschle B. Post‐combustion and Oxy‐combustion Technologies. In Biomass Energy with Carbon Capture and Storage (BECCS): Unlocking Negative Emissions; Wiley: Hoboken, NJ, USA, 2018.
57.
Kelemen P, Benson SM, Pilorgé H, Psarras P, Wilcox J. An Overview of the Status and Challenges of CO2 Storage in Minerals and Geological Formations.  Front. Clim. 2019, 1, 1–20. [Google Scholar]
58.
National Academies of Sciences, Engineering, and Medicine (NASEM). Negative Emissions Technologies and Reliable Sequestration: A Research Agenda; The National Academies Press: Washington, DC, USA, 2019.
59.
Dooley JJ. Estimating the Supply and Demand for Deep Geologic CO2 Storage Capacity over the Course of the 21st Century: A Meta-Analysis of the Literature.  Energy Procedia 2013, 37, 5141–5150. [Google Scholar]
60.
Babin A, Vaneeckhaute C, Iliuta MC. Potential and Challenges of Bioenergy with Carbon Capture and Storage as a Carbon-Negative Energy Source: A Review.  Biomass Bioenergy 2021, 146, 1–25. [Google Scholar]
61.
Quiggin D. BECCS Deployment - The Risks of Policies Forging Ahead of the Evidence; Chatham House: London, UK 2021. Available online: https://www.chathamhouse.org/2021/10/beccs-deployment/ (accessed on 11 April 2023).
62.
Fajardy M, Mac Dowell N. Can BECCS Deliver Sustainable and Resource Efficient Negative Emissions?  Energy Environ. Sci. 2017, 10, 1389–1426. [Google Scholar]
63.
Daggash HA, Bui M, Dowell NM. Priorities for Policy Design. In Greenhouse Gas Removal Technologies; Royal Society of Chemistry: London, UK, 2022; pp. 430–464.
64.
Zeman FS, Lackner KS. Capturing Carbon Dioxide Directly from the Atmosphere.  World Resour. Rev. 2004, 16, 157–172. [Google Scholar]
65.
Baciocchi R, Storti G, Mazzotti M. Process Design and Energy Requirements for the Capture of Carbon Dioxide from Air.  Chem. Eng. Process. Process Intensif. 2006, 45, 1047–1058. [Google Scholar]
66.
Keith DW, Holmes G, St. Angelo D, Heidel K. A Process for Capturing CO2 from the Atmosphere.  Joule 2018, 2, 1573–1594. [Google Scholar]
67.
Mahmoudkhani M, Keith DW. Low-Energy Sodium Hydroxide Recovery for CO2 Capture from Atmospheric Air-Thermodynamic Analysis.  Int. J. Greenh. Gas Control 2009, 3, 376–384. [Google Scholar]
68.
Sabatino F, Grimm A, Gallucci F, van Sint Annaland M, Kramer GJ, Gazzani M. A Comparative Energy and Costs Assessment and Optimization for Direct Air Capture Technologies.  Joule 2021, 5, 2047–2076. [Google Scholar]
69.
Kulkarni AR, Sholl DS. Analysis of Equilibrium-Based TSA Processes for Direct Capture of CO2 from Air.  Ind. Eng. Chem. Res. 2012, 51, 8631–8645. [Google Scholar]
70.
Sinha A, Darunte LA, Jones CW, Realff MJ, Kawajiri Y. Systems Design and Economic Analysis of Direct Air Capture of CO2 through Temperature Vacuum Swing Adsorption Using MIL-101(Cr)-PEI-800 and Mmen-Mg2(Dobpdc) MOF Adsorbents.  Ind. Eng. Chem. Res. 2017, 56, 750–764. [Google Scholar]
71.
Fasihi M, Efimova O, Breyer C. Techno-Economic Assessment of CO2 Direct Air Capture Plants.  J. Clean. Prod. 2019, 224, 957–980. [Google Scholar]
72.
Sodiq A, Abdullatif Y, Aissa B, Ostovar A, Nassar N, El-Naas M, et al. A Review on Progress Made in Direct Air Capture of CO2 Environ. Technol. Innov. 2023, 29, 102991. [Google Scholar]
73.
Young J, McQueen N, Charalambous C, Foteinis S, Hawrot O, Ojeda M, et al. The Cost of Direct Air Capture and Storage: The Impact of Technological Learning, Regional Diversity, and Policy. ChemRxiv 2022, 1–37, doi:10.26434/chemrxiv-2022-dp36t-v3.
74.
Schaller R, Markus T, Korte K, Gawel E. Atmospheric CO2 as a Resource for Renewable Energy Production: A European Energy Law Appraisal of Direct Air Capture Fuels.  Rev. Eur. Comp. Int. Environ. Law 2022, 31, 258–267. [Google Scholar]
75.
Smith SM, Geden O, Nemet GF, Gidden M, Lamb WF, Powis CM, et al. The State of Carbon Dioxide Removal - 1st Edition. Available online: https://www.stateofcdr.org/resources (accessed on 11 April 2023).
76.
Asefi-Najafabady S, Villegas-Ortiz L, Morgan J. The Failure of Integrated Assessment Models as a Response to ‘Climate Emergency’ and Ecological Breakdown: The Emperor Has No Clothes.  Globalizations 2021, 18, 1178–1188. [Google Scholar]
77.
Keen S. The Appallingly Bad Neoclassical Economics of Climate Change.  Globalizations 2021, 18, 1149–1177. [Google Scholar]
78.
Gills B, Morgan J. Economics and Climate Emergency.  Globalizations 2021, 18, 1071–1086. [Google Scholar]
79.
Spangenberg JH, Polotzek L. Like Blending Chalk and Cheese-the Impact of Standard Economics in IPCC Scenarios.  Real-World Econ. Rev. 2019, 87, 196–211. [Google Scholar]
80.
Spangenberg J, Neumann W, Klöser H, Wittig S, Uhlenhaut T, Mertens M, et al. False Hopes, Missed Opportunities: How Economic Models Affect the IPCC Proposals in Special Report 15 “Global Warming of 1.5 °C” (2018). An Analysis from the Scientific Advisory Board of BUND.  J. Appl. Bus. Econ. 2021, 23, 49–72. [Google Scholar]
81.
Ekardt F. Economic Evaluation, Cost-Benefit Analysis, Economic Ethics; Springer International Publishing: Cham, Switzerland, 2022.
82.
Ekardt F, von Bredow H. Extended Emissions Trading Versus Sustainability Criteria: Managing the Ecological and Social Ambivalence of Bioenergy.  Renew. Energy Law Policy Rev. 2012, 3, 49–64. [Google Scholar]
83.
83. International Energy Agency (IEA). Bioenergy with Carbon Capture and Storage; IEA: Paris, France, 2022. Available online: https://www.iea.org/reports/bioenergy-with-carbon-capture-and-storage (accessed on 11 April 2023).
84.
IEA. Direct Air Capture; IEA: Paris, France 2022. Available online: https://www.iea.org/reports/direct-air-capture-2022 (accessed on 11 April 2023).
85.
Nemet GF. How Solar Energy Became Cheap: A Model for Low-Carbon Innovation; Routledge: London, UK, 2019
86.
Borchers M, Thrän D, Chi Y, Dahmen N, Dittmeyer R, Dolch T, Dold C, Förster J, Herbst M, Heß D, et al. Scoping Carbon Dioxide Removal Options for Germany–What Is Their Potential Contribution to Net-Zero CO2 Front. Clim. 2022, 4, 810343. [Google Scholar]
87.
Strack M, Davidson SJ, Hirano T, Dunn C. The Potential of Peatlands as Nature-Based Climate Solutions.  Curr. Clim. Change Rep. 2022, 8, 71–82. [Google Scholar]
88.
Günther A, Barthelmes A, Huth V, Joosten H, Jurasinski G, Koebsch F, Couwenberg J. Prompt Rewetting of Drained Peatlands Reduces Climate Warming despite Methane Emissions.  Nat. Commun. 2020, 11, 1644. [Google Scholar]
89.
Rey F. Harmonizing Erosion Control and Flood Prevention with Restoration of Biodiversity through Ecological Engineering Used for Co-Benefits Nature-Based Solutions.  Sustainability 2021, 13, 11150. [Google Scholar]
90.
Turkelboom F, Demeyer R, Vranken L, De Becker P, Raymaekers F, De Smet L. How Does a Nature-Based Solution for Flood Control Compare to a Technical Solution? Case Study Evidence from Belgium.  Ambio 2021, 50, 1431–1445. [Google Scholar]
91.
Reise J, Siemons A, Böttcher H, Herold A, Urrutia C, Schneider L. Nature-Based Solutions and Global Climate Protection: Assessment of Their Global Mitigation Potential and Recommendations for International Climate Policy; Umweltbundesamt: Dessau-Roßlau, Germany, 2022. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2022-01-03_climate-change_01-2022_potential_nbs_policy_paper_final.pdf (accessed on 11 April 2023).
92.
European Commission. Nature-Based Solutions for Climate Mitigation: Analysis of EU Funded Projects; Publications Office of the European Union: Luxembourg, Luxembourg, 2020. Available online: https://op.europa.eu/en/publication-detail/-/publication/6dd4d571-cafe-11ea-adf7-01aa75ed71a1 (accessed on 11 April 2023).
93.
Donatti CI, Andrade A, Cohen-Shacham E, Fedele G, Hou-Jones X, Robyn B.  Ensuring That Nature-Based Solutions for Climate Mitigation Address Multiple Global Challenges.  One Earth 2022, 5, 493–504. [Google Scholar]
94.
Seddon N, Chausson A, Berry P, Girardin CAJ, Smith A, Turner B. Understanding the Value and Limits of Nature-Based Solutions to Climate Change and Other Global Challenges.  Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190120. [Google Scholar]
95.
Dooley K, Keith H, Catacora-Vargas G, Carton W, Christiansen KL, Enokenwa Baa O, et al. The Land Gap Report 2022. Available online: https://www.landgap.org (accessed on 11 April 2023).
96.
Ekardt F, Wieding J, Garske B, Stubenrauch J. Agriculture-Related Climate Policies – Law and Governance Issues on the European and Global Level.  Carbon Clim. Law Rev. 2018, 12, 316–331. [Google Scholar]
97.
Garske B. Ordnungsrechtliche und ökonomische Instrumente der Phosphor-Governance; Metropolis Verlag: Marburg, Germany, 2020.
98.
Stubenrauch J. Phosphor-Governance in ländervergleichender Perspektive – Deutschland, Costa Rica, Nicaragua; Metropolis Verlag: Marburg, Germany, 2019.
99.
Ekardt F, Hennig B. Ökonomische Instrumente und Bewertungen der Biodiversität: Lehren für den Naturschutz aus dem Klimaschutz?; Metropolis Verlag: Marburg, Germany, 2015.
100.
Proelß A, Güssow K. Climate Engineering: Instrumente und Institutionen des internationalen Rechts; Institut für Umwelt- und Technikrecht: Trier, Germany, 2011. Available online: https://docplayer.org/73085915-Alexander-proelss-kerstin-guessow-climate-engineering-instrumente-und-institutionen-des-internationalen-rechts.html (accessed on 11 April 2023).
101.
Kelsen H. Pure Theory of Law; University of California Press: Berkeley, CA, USA, 1967.
102.
Shelton D. Normative Hierarchy in International Law.  Am. J. Int. Law 2006, 100, 291–323. [Google Scholar]
103.
Sands PJ, Peel J. Principles of International Environmental Law; Cambridge University Press: Cambridge, UK, 2018.
104.
Ekardt F. Theorie Der Nachhaltigkeit; Nomos: Baden-Baden, Germany, 2017.
105.
Kreuter-Kirchhof C. Neue Kooperationsformen im Umweltvölkerrecht: Die Kyoto-Mechanismen; Duncker & Humblot: Berlin, Germany, 2005.
106.
Lin AC. International Legal Regimes and Principles Relevant to Geoengineering. In Climate Change Geoengineering; Cambridge University Press: Cambridge, UK, 2013; pp. 182–199.
107.
Güssow K. Sekundärer maritimer Klimaschutz: Das Beispiel der Ozeandüngung; Duncker & Humblot: Berlin, Germany, 2012.
108.
Bodansky D. May We Engineer the Climate?  Clim. Change 1996, 33, 309–321. [Google Scholar]
109.
Arato J. Subsequent Practice and Evolutive Interpretation: Techniques of Treaty Interpretation over Time and Their Diverse Consequences.  Law Pract. Int. Courts Trib. 2010, 9, 443–494. [Google Scholar]
110.
Helmersen ST. Evolutive Treaty Interpretation: Legality, Semantics and Distinctions.  Eur. J. Leg. Stud. 2013, 6, 126–148. [Google Scholar]
111.
Djeffal C. Static and Evolutive Treaty Interpretation: A Functional Reconstruction; Cambridge University Press: Cambrdige, UK, 2016.
112.
Lin AC. Carbon Dioxide Removal after Paris.  Ecol. Law Q. 2018, 45, 533–582. [Google Scholar]
113.
Rickels W, Klepper G, Dovern J, Betz G, Brachatzeck N, Cacean S, et al. Gezielte Eingriffe in das Klima? Eine Bestandsaufnahme der Debatte zu Climate Engineering; Kiel Earth Institute: Kiel, Germany, 2011; pp. 1–189. Available online: https://www.fona.de/medien/pdf/Bestandsaufnahme_Debatte_Climate_Engineering_de.pdf (accessed on 11 April 2023).

114.
Honegger M, Michaelowa A, Poralla M. Net-Zero Emissions: The Role of Carbon Dioxide Removal in the Paris Agreement; Perspectives Climate Research: Freiburg, Germany, 2019; pp. 1–39. Available online: https://www.perspectives.cc/public/fileadmin/Publications/Situating_NETs_under_the_PA.pdf (accessed on 11 April 2023).
115.
Zedalis RJ. Climate Change and the National Academy of Sciences’ Idea of Geoengineering: One American Academic’s Perspective on First Considering the Text of Existing International Agreements.  Eur. Energy Environ. Law Rev. 2010, 19, 18–32. [Google Scholar]
116.
Villiger ME. Commentary on the 1969 Vienna Convention on the Law of Treaties; Martinus Nijhoff Publishers: Leiden, The Netherlands, 2009.
117.
Dörr O. Article 32: Supplementary Means of Interpretation. In Vienna Convention on the Law of Treaties: A Commentary; Springer: Berlin, Germany, 2018; pp. 617–633.
118.
Oxford Learner's Dictionary of Academic English (OLDAE). Conservation (Noun). Available online: https://www.oxfordlearnersdictionaries.com/definition/english/conservation (accessed on 11 April 2023).
119.
Oxford Learner's Dictionary of Academic English (OLDAE). Conserve (Verb). Available online: https://www.oxfordlearnersdictionaries.com/definition/english/conserve (accessed on 11 April 2023).
120.
Oxford Learner's Dictionary of Academic English (OLDAE). Enhancement (Noun). Available online: https://www.oxfordlearnersdictionaries.com/definition/english/enhancement (accessed on 11 April 2023).
121.
Oxford Learner's Dictionary of Academic English (OLDAE). Enhance (Verb). Available online: https://www.oxfordlearnersdictionaries.com/definition/english/enhance (accessed on 11 April 2023).
122.
Gillespie A. Sinks and the Climate Change Regime: The State of Play.  Duke Environ. Law Policy Forum 2003, 13, 279–301. [Google Scholar]
123.
Markus T, Schaller R, Gawel E, Korte K. Negativemissionstechnologien und ihre Verortung im Regelsystem internationaler Klimapolitik.  Nat. Recht 2021, 43, 153–158. [Google Scholar]
124.
Withey P, Johnston C, Guo J. Quantifying the Global Warming Potential of Carbon Dioxide Emissions from Bioenergy with Carbon Capture and Storage.  Renew. Sustain. Energy Rev. 2019, 115, 109408. [Google Scholar]
125.
Bodansky D. Governing Climate Engineering: Scenarios for Analysis.  Harv. Proj. Clim. Agreem. Discuss. Pap. 2011, 47, 1–37. [Google Scholar]
126.
Sands P, Cook K. The Restriction of Geoengineering under International Law - Joint Opinion; London, UK, 2021; pp. 1–57. Available online: https://www.ohchr.org/sites/default/files/2022-06/Annex-SubmissionCIEL-ETC-HBF-TWN-Geoengineering-Opinion.pdf (accessed on 11 April 2023).
127.
Dooley K, Harrould-Kolieb E, Talberg A. Carbon-Dioxide Removal and Biodiversity: A Threat Identification Framework.  Glob. Policy 2020, 12, 34–44. [Google Scholar]
128.
Smith P, Price J, Molotoks A, Warren R, Malhi Y. Impacts on Terrestrial Biodiversity of Moving from a 2 °C to a 1.5 °C target.  Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2018, 376, 20160456. [Google Scholar]
129.
Bodle R, Homann G, Schiele S, Tedsen E. The Regulatory Framework for Climate-Related Geoengineering Relevant to the Convention on Biological Diversity. In Geoengineering in Relation to the Convention on Biological Diversity: Technical and Regulatory Matters; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2012.
130.
Yamin F, Depledge J. The International Climate Change Regime: A Guide to Rules, Institutions and Procedures; Cambridge University Press: Cambridge, UK, 2004
131.
Freestone D, Rayfuse R. Ocean Iron Fertilization and International Law.  Mar. Ecol. Prog. Ser. 2008, 364, 227–233. [Google Scholar]
132.
Reynolds J. Climate Engineering Field Research: The Favorable Setting of International Environmental Law.  Wash. Lee J. Energy Clim. Environ. 2014, 5, 417–486. [Google Scholar]
133.
Lu Z-N, Chen H, Hao Y, Wang J, Song X, Mok TM. The Dynamic Relationship between Environmental Pollution, Economic Development and Public Health: Evidence from China.  J. Clean. Prod. 2017, 166, 134–147. [Google Scholar]
134.
Rahman MM, Alam K, Velayutham E. Is Industrial Pollution Detrimental to Public Health? Evidence from the World’s Most Industrialised Countries.  BMC Public Health 2021, 21, 1175. [Google Scholar]
135.
Pienkowski T, Dickens BL, Sun H, Carrasco LR. Empirical Evidence of the Public Health Benefits of Tropical Forest Conservation in Cambodia: A Generalised Linear Mixed-Effects Model Analysis.  Lancet Planet. Health 2017, 1, e180–e187. [Google Scholar]
136.
Remoundou K, Koundouri P. Environmental Effects on Public Health: An Economic Perspective.  Int. J. Environ. Res. Public. Health 2009, 6, 2160–2178. [Google Scholar]
137.
Clark NE, Lovell R, Wheeler BW, Higgins SL, Depledge MH, Norris K. Biodiversity, Cultural Pathways, and Human Health: A Framework.  Trends Ecol. Evol. 2014, 29, 198–204. [Google Scholar]
138.
Goren A. Treating Health Care under the Right to Health: Why the Public Option Is the Only Way to Prevent Inequitable Access to Medications from Becoming Terminal.  Health Law Policy Brief 2014, 4, 41–53. [Google Scholar]
139.
Kinney ED. The International Human Right to Health: What Does This Mean for Our Nation and World?  Indiana Law Rev. 2001, 34, 1458–1475. [Google Scholar]
140.
Buck HJ. Ending Fossil Fuels: Why Net Zero Is Not Enough; Verso Books: London, UK, 2021.
141.
Bodansky D, Brunnée J, Rajamani L. International Climate Change Law; Oxford University Press: Oxford, UK, 2017.
142.
Oberthür S, Ott H. The Kyoto Protocol: International Climate Policy for the 21st Century; Springer: New York, NY, USA, 1999.
143.
Bodle R, Oberthür S, Donat L, Homann G, Sina S, Tedsen E. Options and Proposals for the International Governance of Geoengineering; Umweltbundesamt: Dessau-Roßlau, Germany 2014; pp. 1–215. Available online: https://www.ecologic.eu/sites/default/files/publication/2014/options-and-proposals-for-the-international-governance-of-geoengineering-bodle-2014.pdf (accessed on 11 April 2023).
144.
Yamin F. The Kyoto Protocol: Origins, Assessment and Future Challenges.  RECIEL Rev. Eur. Comp. Int. Environ. Law 1998, 7, 113–127. [Google Scholar]
145.
Mace MJ, Fyson CL, Schaeffer M, Hare WL. Governing Large-Scale Carbon Dioxide Removal: Are We Ready? - An Update; Carnegie Climate Governance Initiative (C2G): New York, United States, 2021; pp.1–56. Available online: https://climateanalytics.org/media/are-we-ready_2021_fullreport.pdf (accessed on 11 April 2023).
146.
Dessai S, Schipper EL. The Marrakech Accords to the Kyoto Protocol: Analysis and Future Prospects.  Inst. Glob. Environ. Change 2003, 13, 149–153. [Google Scholar]
147.
Mace MJ, Fyson CL, Schaeffer M, Hare WL. Large-Scale Carbon Dioxide Removal to Meet the 1.5°C Limit: Key Governance Gaps, Challenges and Priority Responses.  Glob. Policy 2021, 12, 67–81. [Google Scholar]
148.
IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2006.
149.
Gupta J. A History of International Climate Change Policy.  WIREs Clim. Change 2010, 1, 636–653. [Google Scholar]
150.
Du H. An International Legal Framework for Geoengineering: Managing the Risks of an Emerging Technology; Routledge: Abingdon, UK, 2018.
151.
Martin-Roberts E, Scott V, Flude S, Johnson G, Haszeldine RS, Gilfillan S. Carbon Capture and Storage at the End of a Lost Decade.  One Earth 2021, 4, 1–16. [Google Scholar]
152.
Ekardt F, Wieding J. Rechtlicher Aussagegehalt des Paris-Abkommens – eine Analyse der einzelnen Artikel. Zeitschrift für Umweltpolitik und Umweltrecht 2016, Sonderheft, 36–57.
153.
Bodle R, Oberthür S. Legal Form of the Paris Agreement and Nature of Its Obligations. In The Paris Agreement on Climate Change: Analysis and Commentary; Oxford University Press: Oxford, UK, 2017; pp. 91–106.
154.
La Viña AGM, de Leon A. Conserving and Enhancing Sinks and Reservoirs of Greenhouse Gases, Including Forests (Article 5). In The Paris Agreement on Climate Change: Analysis and Commentary; Oxford University Press: Oxford, UK, 2017; pp. 166–177.
155.
Fuglestvedt J, Rogelj J, Millar RJ, Allen M, Boucher O, Cain M, et al. Implications of Possible Interpretations of ‘Greenhouse Gas Balance’ in the Paris Agreement.  Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2018, 376, 1–17. [Google Scholar]
156.
IPCC. Global Warming of 1.5 °C: An IPCC Special Report; IPCC: Geneva, Switzerland, 2018. Available online: https://www.ipcc.ch/sr15/ (accessed on 11 April 2023).
157.
Luderer G, Vrontisi Z, Bertram C, Edelenbosch OY, Pietzcker RC, Rogelj J, et al. Residual Fossil CO2 Emissions in 1.5–2 °C Pathways.  Nat. Clim. Change 2018, 8, 626–633. [Google Scholar]
158.
Buck HJ, Carton W, Lund JF, Markusson N. Why Residual Emissions Matter Right Now.  Nat. Clim. Change 2023, 13, 351–358. [Google Scholar]
159.
Streck C. REDD+ and Leakage: Debunking Myths and Promoting Integrated Solutions.  Clim. Policy 2021, 21, 843–852. [Google Scholar]
160.
Seddon N, Smith A, Smith P, Key I, Chausson A, Girardin C, et al. Getting the Message Right on Nature‐based Solutions to Climate Change.  Glob. Change Biol. 2021, 27, 1518–1546. [Google Scholar]
Creative Commons

© 2024 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (https://creativecommons.org/licenses/by/4.0/).