Review Open Access

Review on Multi-Functional Separator for Li-S Batteries

Sustainable Polymer & Energy. 2023, 1(1), 10003; https://doi.org/10.35534/spe.2023.10003
Xin Zhang 1,    Bingyi Ma 1,    Sheng Huang 2,    Dongmei Han 1, 2, *   
1
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
2
The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
*
Authors to whom correspondence should be addressed.

Received: 18 Dec 2022    Accepted: 06 Mar 2023    Published: 13 Mar 2023   

Abstract

Because lithium-ion batteries are not able to meet increasing demand for capacity density and power density, lithium metal batteries are given great expectations as the next generation of rechargeable batteries. As one of lithium metal batteries, lithium-sulfur (Li-S) batteries have attracted extensive attention because of their ultrahigh capacity density (1675 mAh g−1) and low cost of sulfur. In order to overcome problems of active material attenuation, dendritic growth and volume expansion caused by the shuttle effect in Li-S batteries, researchers have adopted several methods such as adding electrolyte additives, electrode modification and separator modification. Among them, separator modification shows significant advantages in inhibiting the shuttle effect of lithium polysulfides. This paper reviews research progress of inhibiting the shuttle effect of Li-S batteries by separator modification in recent years, including direct design of new type separator and physical/chemical modification of separator surface. Through extensive reading and summarizing research results of separator modification of Li-S batteries, we give the possible development direction of Li-S batteries at the end of the paper.

References

1.
Cheng XB, Liu H, Yuan H, Peng HJ, Tang C, Huang JQ, et al. A perspective on sustainable energy materials for lithium batteries. SusMat 2021, 1, 38–50. [Google Scholar]
2.
Lei T, Chen W, Lv W, Huang J, Zhu J, Chu J, et al. Inhibiting Polysulfide Shuttling with a Graphene Composite Separator for Highly Robust Lithium-Sulfur Batteries. Joule 2018, 2, 2091–2104. [Google Scholar]
3.
Wu Z, He X, Zhou J, Yang X, Sun L, Li H, et al. Scalable fabrication of Ni(OH)2/carbon/polypropylene separators for high-performance Li-S batteries. J. Alloys Compd. 2023, 935, 168136. [Google Scholar]
4.
Lin YL, Zhou YC, Huang S, Xiao M, Han DM, Qin JX, et al. Catalytic Disproportionation for Suppressing Polysulfide Shuttle in Li-S Pouch Cells: Beyond Adsorption Interactions. Adv. Energy Mater. 2022, 12, 2201912. [Google Scholar]
5.
Li T, Bai X, Gulzar U, Bai YJ, Capiglia C, Deng W, et al. A Comprehensive Understanding of Lithium-Sulfur Battery Technology. Adv. Funct. Mater. 2019, 29, 1901730. [Google Scholar]
6.
Zhang Z, Dong Y, Gu Y, Lu P, Xue F, Fan Y, et al. Graphene-nanoscroll-based Janus bifunctional separators suppress lithium dendrites and polysulfides shuttling synchronously in high-performance lithium–sulfur batteries. J. Mater. Chem. A 2022, 10, 9515–9523. [Google Scholar]
7.
Yan C, Cheng XB, Tian Y, Chen X, Zhang XQ, Li WJ, et al. Dual-Layered Film Protected Lithium Metal Anode to Enable Dendrite-Free Lithium Deposition. Adv. Mater. 2018, 30, 1707629. [Google Scholar]
8.
Zu JH, Jing WT, Dai X, Feng Z, Sun JJ, Tan Q, et al. A nano rod-like alpha-MnO2 supported on carbon nanotubes modified separator inhibiting polysulfide shuttle in Li-S batteries. J. Alloys Compd. 2023, 933, 167767. [Google Scholar]
9.
Ma W, Shao Z, Yao J, Zhao K, Ma X, Wu L, et al. Mott-Schottky electrocatalyst selectively mediates the sulfur species conversion in lithium-sulfur batteries. J. Colloid Interface Sci. 2023, 631, 114–124. [Google Scholar]
10.
Han L, Sun SZ, Yang YQ, Yue JB, Li JD. An ultrathin double-layer covalent organic framework/zwitterionic microporous polymer functional separator for high-performance lithium-sulfur battery. Appl. Surface Sci. 2023, 610, 155496. [Google Scholar]
11.
Guo LL, Zhang X, Xiao M, Wang SJ, Han DM, Meng YZ. Two-Dimensional Materials Modified Separator Strategies of Suppressing the Shuttle Effect in Lithium-Sulfur Batteries. Progress Chem. 2021, 33, 1198–1206. [Google Scholar]
12.
Luo YQ, Guo LL, Xiao M, Wang SJ, Ren S, Han DM, et al. Strategies for inhibiting anode dendrite growth in lithium-sulfur batteries. J. Mater. Chem. A 2020, 8, 4629–4646. [Google Scholar]
13.
Huang S, Guan R, Wang S, Xiao M, Han D, Sun L, et al. Polymers for high performance Li-S batteries: Material selection and structure design. Progress Polym. Sci. 2019, 89, 19–60. [Google Scholar]
14.
Huang XY, Xue JJ, Xiao M, Wang SJ, Li YN, Zhang SC, et al. Comprehensive evaluation of safety performance and failure mechanism analysis for lithium sulfur pouch cells. Energy Storage Mater. 2020, 30, 87–97. [Google Scholar]
15.
Zhong L, Wang SJ, Xiao M, Liu W, Han DM, Li ZF, et al. Addressing interface elimination: Boosting comprehensive performance of all-solid-state Li-S battery. Energy Storage Mater. 2021, 41, 563–570. [Google Scholar]
16.
Chen DD, Huang S, Zhong L, Wang SJ, Xiao M, Han DM, et al. In Situ Preparation of Thin and Rigid COF Film on Li Anode as Artificial Solid Electrolyte Interphase Layer Resisting Li Dendrite Puncture. Adv. Funct. Mater. 2020, 30, 1907717. [Google Scholar]
17.
Chen DD, Liu P, Zhong L, Wang SJ, Xiao M, Han DM, et al. Covalent Organic Frameworks with Low Surface Work Function Enabled Stable Lithium Anode. Small 2021, 17, 2101496. [Google Scholar]
18.
Zhong L, Mo YD, Deng KR, Wang SJ, Han DM, Ren S, et al. Lithium Borate Containing Bifunctional Binder to Address Both Ion Transporting and Polysulfide Trapping for High-Performance Li-S Batteries. ACS Appl. Mater. Interfaces 2019, 11, 28968–28977. [Google Scholar]
19.
Zhou C, He Q, Li Z, Meng J, Hong X, Li Y, et al. A robust electrospun separator modified with in situ grown metal-organic frameworks for lithium-sulfur batteries. Chem. Eng. J. 2020, 395, 124979. [Google Scholar]
20.
Deng N, Wang L, Feng Y, Liu M, Li Q, Wang G, et al. Co-based and Cu-based MOFs modified separators to strengthen the kinetics of redox reaction and inhibit lithium-dendrite for long-life lithium-sulfur batteries. Chem. Eng. J. 2020, 388, 124241. [Google Scholar]
21.
Rao Z, Meng J, Wu J, Yu S, Fu Q, Huang Y. A Multifunctional Inorganic Composite Separator for Stable High-Safety Lithium–Sulfur Batteries. ACS Appl. Energy Mater. 2020, 3, 10139–10146. [Google Scholar]
22.
Zhang J, Rao Q, Jin B, Lu J, He QG, Hou Y, et al. Cerium oxide embedded bilayer separator enabling fast polysulfide conversion for high-performance lithium-sulfur batteries. Chem. Eng. J. 2020, 388, 124120. [Google Scholar]
23.
Hu M, Ma Q, Yuan Y, Pan Y, Chen M, Zhang Y, et al. Grafting polyethyleneimine on electrospun nanofiber separator to stabilize lithium metal anode for lithium sulfur batteries. Chem. Eng. J. 2020, 388, 124258. [Google Scholar]
24.
Luo X, Lu X, Chen X, Chen Y, Song C, Yu C, et al. A robust flame retardant fluorinated polyimide nanofiber separator for high-temperature lithium–sulfur batteries. J. Mater. Chem. A 2020, 8, 14788–14798. [Google Scholar]
25.
Li Y, Zhang J, Zhou C, Ling M, Lu J, Hou Y, et al. Flame-retardant and thermal-stable separator trapping polysulfides for lithium-sulfur battery. J. Alloys Compd. 2020, 826, 154197. [Google Scholar]
26.
Li H, Lv R, Zeng R, Na B, Zhang S, Liu H, et al. In Situ Template-Sacrificing Approach to a Highly Conductive 3D Hybrid Interlayer of an Advanced Lithium–Sulfur Battery Separator. Energy Technol. 2020, 8, 2000118. [Google Scholar]
27.
Liu J, Liu M, Wang C, Li Q, Li J, Chen Y, et al. SiO2 blending polyetherimide separator modified with acetylene black/polyvinylpyrrolidone coating layer to enhance performance for lithium-sulfur batteries. Int. J. Energy Res. 2021, 45, 16551–16564. [Google Scholar]
28.
Su YS, Manthiram A. A new approach to improve cycle performance of rechargeable lithium–sulfur batteries by inserting a free-standing MWCNT interlayer. Chem. Commun. 2012, 48, 8817–8819. [Google Scholar]
29.
Zhu S, Gong L, Pan Y, Deng Y, Zhou Y, Cheng X, et al. Coral-like interconnected carbon aerogel modified separator for advanced lithium-sulfur batteries. Electrochim. Acta 2020, 354, 136637. [Google Scholar]
30.
Rana M, Li M, He Q, Luo B, Wang L, Gentle I, et al. Separator coatings as efficient physical and chemical hosts of polysulfides for high-sulfur-loaded rechargeable lithium–sulfur batteries. J. Energy Chem. 2020, 44, 51–60. [Google Scholar]
31.
Cheng H, Liu H, Jin H, Cai N, Gao C, Zhao S, et al. Suppression of polysulfide shuttling with a separator modified using spontaneously polarized bismuth ferrite for high performance lithium–sulfur batteries. J. Mater. Chem. A 2020, 8, 16429–16436. [Google Scholar]
32.
Wang WK, Yang YF, Luo HM, Li SB, Zhang JP. A separator based on natural illite/smectite clay for highly stable lithium-sulfur batteries. J. Colloid Interface Sci. 2020, 576, 404–411. [Google Scholar]
33.
Choi C, Lee DY, Park JB, Kim DW. Separators Modified Using MoO2@Carbon Nanotube Nanocomposites as Dual-Mode Li-Polysulfide Anchoring Materials for High-Performance Anti-Self-Discharge Lithium-Sulfur Batteries. ACS Sustain. Chem. Eng. 2020, 8, 15134–15148. [Google Scholar]
34.
Zuo Y, Zhu Y, Tang X, Zhao M, Ren P, Su W, et al. MnO2 supported on acrylic cloth as functional separator for high-performance lithium–sulfur batteries. J. Power Sources 2020, 464, 228181. [Google Scholar]
35.
Wan YH, Ma XX, Hao JW, Min HH, You HR, Liu XM, et al. Titanium-based nanorods/ketjen black modified separator as polysulfides barrier for lithium sulfur cell. J. Alloy Compd. 2020, 842, 10. [Google Scholar]
36.
Huang ZD, Yang MT, Qi JQ, Zhang P, Lei L, Du QC, et al. Mitigating the polysulfides “shuttling” with TiO2 nanowires/nanosheets hybrid modified separators for robust lithium-sulfur batteries. Chem. Eng. J. 2020, 387, 124080. [Google Scholar]
37.
Chen C, Jiang Q, Xu H, Zhang Y, Zhang B, Zhang Z, et al. Ni/SiO2/Graphene-modified separator as a multifunctional polysulfide barrier for advanced lithium-sulfur batteries. Nano Energy 2020, 76, 105033. [Google Scholar]
38.
Li D, Yang J, Xu X, Wang X, Chen J, Xu J, et al. Synergistic inhibitory effect of ultralight CNTs-COOH@Fe3O4 modified separator on polysulfides shuttling for high-performance lithium-sulfur batteries. J. Membr. Sci. 2020, 611, 118300. [Google Scholar]
39.
Wu X, Liu M, Yao S, Li S, Pang S, Shen X, et al. Boosting the electrochemical performance of lithium-sulfur batteries by using a carbon black/LiMn2O4-modified separator. J. Alloys Compd. 2020, 835, 155251. [Google Scholar]
40.
Wang Y, Guo X, Chen C, Wang Y, Li Q, Wu Z, et al. Alleviating the shuttle effect via bifunctional MnFe2O4/AB modified separator for high performance lithium sulfur battery. Electrochim. Acta 2020, 354, 136704. [Google Scholar]
41.
Zhu RX, Lin S, Jiao JF, Ma DY, Cai ZW, Hany K, et al. Magnetic and mesoporous Fe3O4-modified glass fiber separator for high-performance lithium-sulfur battery. Ionics 2020, 26, 2325–2334. [Google Scholar]
42.
Angulakshmi N, Dhanalakshmi RB, Półrolniczak P, Walkowiak M, Xie P, Tian X, et al. An efficient bi-functional permselective separator coated with cubic type-Li7La3Zr2O12 and activated carbon for lithium–sulfur batteries. Sustain. Energy Fuels 2020, 4, 3500–3510. [Google Scholar]
43.
Cho J, Ahn YK, Gong YJ, Pyo S, Yoo J, Kim YS. An organic–inorganic composite separator for preventing shuttle effect in lithium–sulfur batteries. Sustain. Energy Fuels 2020, 4, 3051–3057. [Google Scholar]
44.
Yan G, Xu C, Meng Z, Hou M, Yan W, Lin N, et al. A TiS2/Celgard separator as an efficient polysulfide shuttling inhibitor for high-performance lithium–sulfur batteries. Nanoscale 2020, 12, 24368–24375. [Google Scholar]
45.
Mao L, Mao J. Ultralow-decay lithium-sulfur batteries: Modified separator with graphene/ZnS(en)(0.5)exfoliation nanosheets. J. Solid State Chem. 2020, 290, 121555. [Google Scholar]
46.
Li Z, Zhang F, Tang L, Tao Y, Chen H, Pu X, et al. High areal loading and long-life cycle stability of lithium-sulfur batteries achieved by a dual-function ZnS-modified separator. Chem. Eng. J. 2020, 390, 124653. [Google Scholar]
47.
Li Z, Zhang F, Cao T, Tang L, Xu Q, Liu H, et al. Highly Stable Lithium-Sulfur Batteries Achieved by a SnS/Porous Carbon Nanosheet Architecture Modified Celgard Separator. Adv. Funct. Mater. 2020, 30, 2006297. [Google Scholar]
48.
Li B, Pan Y, Luo B, Zao J, Xiao Y, Lei S, et al. MOF-derived NiCo2S4@C as a separator modification material for high-performance lithium-sulfur batteries. Electrochim. Acta 2020, 344, 135811. [Google Scholar]
49.
Zhang Z, Wang JN, Shao AH, Xiong DG, Liu JW, Lao CY, et al. Recyclable cobalt-molybdenum bimetallic carbide modified separator boosts the polysulfide adsorption-catalysis of lithium sulfur battery. Sci. China Mater. 2020, 63, 2443–2455. [Google Scholar]
50.
Shen Q, Huang L, Chen G, Zhang X, Chen Y. One-step synthesis of titanium nitride/nitrogen-doped graphene nanocomposite as separator modifying material for advanced lithium-sulfur batteries. J. Alloy Compd. 2020, 845, 155543. [Google Scholar]
51.
Qi C, Xu L, Wang J, Li H, Zhao C, Wang L, et al. Titanium-Containing Metal-Organic Framework Modified Separator for Advanced Lithium-Sulfur Batteries. ACS Sustain. Chem. Eng. 2020, 8, 12968–12975. [Google Scholar]
52.
Wang MY, Han SH, Chao ZS, Li SY, Tan B, Lai JX, et al. Celgard-supported LiX zeolite membrane as ion-permselective separator in lithium sulfur battery. J. Membr. Sci. 2020, 611, 118386. [Google Scholar]
53.
Wang J, Li J. Cobalt-based zeolitic imidazolate frameworks modified separator as efficient polysulfide adsorbent for high performance lithium-sulfur batteries. J. Colloid Interface Sci. 2020, 584, 354–359. [Google Scholar]
54.
You Y, Wei M, Yang L, Wang J, Zhang Y, Xu J. Multifunctional MoSe2@rGO coating on the cathode versus the separator as an efficient polysulfide barrier for high-performance lithium-sulfur battery.  Appl. Surface Sci. 2020, 527, 146785. [Google Scholar]
55.
Zeng L, Zhang Z, Qiu W, Wei J, Fang Z, Deng Q, et al. Multifunctional Polypropylene Separator via Cooperative Modification and Its Application in the Lithium-Sulfur Battery. Langmuir 2020, 36, 11147–11153. [Google Scholar]
56.
Lu X, Wang H, Liu X, Song Z, Jiang N, Xie F, et al. Functional separators prepared via in-situ growth of hollow CoSO4 hydrate arrays on pristine polypropylene membrane for high performance lithium-Sulfur batteries. J. Alloys Compd. 2020, 838, 155618. [Google Scholar]
57.
Liu R, Yin W, Chen Y, Zhong B, Wang G, Liu Y, et al. Facile Utilization of Spent LiCoO2 in Separator Decoration of Lithium-Sulfur Batteries. Ind. Eng. Chem. Res. 2020, 59, 17911–17917. [Google Scholar]
58.
Zhang Z, Shao AH, Xiong DG, Yu J, Koratkar N, Yang ZY. Efficient Polysulfide Redox Enabled by Lattice-Distorted Ni3Fe Intermetallic Electrocatalyst-Modified Separator for Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2020, 12, 19572–19580. [Google Scholar]
59.
Ma C, Feng Y, Liu X, Yang Y, Zhou L, Chen L. Dual-engineered separator for highly robust, all-climate lithium-sulfur batteries.  Energy Storage Mater. 2020, 32, 46–54. [Google Scholar]
60.
Liu J, Xi Y, Li Q, Li J, Liu M, Wang C, et al. An enhanced polyethylene/polyetherimide composite separator for high-performance lithium-sulfur battery. Ionics 2020, 26, 4825–4833. [Google Scholar]
61.
Mathew DE, Gopi S, Kathiresan M, Rani GJ, Thomas S, Stephan AM. A porous organic polymer-coated permselective separator mitigating self-discharge of lithium–sulfur batteries. Mater. Adv. 2020, 1, 648–657. [Google Scholar]
62.
Zhou H, Tang Q, Xu Q, Zhang Y, Huang C, Xu Y, et al. Enhanced performance of lithium–sulfur batteries based on single-sided chemical tailoring, and organosiloxane grafted PP separator. RSC Adv. 2020, 10, 18115–18123. [Google Scholar]
63.
Sun W, Sun X, Akhtar N, Li C, Wang W, Wang A, et al. Attapulgite nanorods assisted surface engineering for separator to achieve high-performance lithium–sulfur batteries. J. Energy Chem. 2020, 48, 364–374. [Google Scholar]
64.
Wang XY, Jia XH, Liang Q, Yang J, Li Y, Shao D, et al. Building polysulfides shuttle barrier with unblocked Li+ transit channels via in-situ grown FeOOH modified separator for Li-S batteries. Appl. Surface Sci. 2022, 606, 154903. [Google Scholar]
65.
Bian S, Huang G, Xuan Y, He B, Liu J, Xu B, et al. Pore surface engineering of covalent organic framework membrane by alkyl chains for lithium based batteries. J. Membr. Sci. 2023, 669, 121268. [Google Scholar]
66.
Jing W, Zu J, Zou K, Dai X, Song Y, Sun J, et al. Tin disulfide embedded on porous carbon spheres for accelerating polysulfide conversion kinetics toward lithium-sulfur batteries. J. Colloid Interface Sci. 2023, 635, 32–42. [Google Scholar]
67.
Zhao Y, Gu Z, Weng W, Zhou D, Liu Z, Fan W, et al. Nitrogen doped hollow carbon nanospheres as efficient polysulfide restricted layer on commercial separators for high-performance lithium-sulfur batteries. Chin. Chem. Lett. 2023, 34, 107232. [Google Scholar]
68.
Yang T, Zheng X, Zhang Y, Duan J, Ji K, Wang C, et al. Coupling multifunctional catalytic active sites into metal carbide catalysts to promote the multipath bidirectional conversion of Li-S redox. J. Alloys Compd. 2023, 938, 168569. [Google Scholar]
69.
Zhang J, Hu J, Li X, Yang L, Yang L, Lin J, et al. High-performance MoS2 quantum dots/graphene functionalized separator and its failure analysis under high sulfur loading. Chem. Eng. J. 2023, 456, 140972. [Google Scholar]
70.
Chen D, Mao Y, Cao Y, Wang W. Ultrathin Ti3C2Tx nanosheets modified separators for lithium–sulphur batteries. Can. J. Chem. Eng. 2022. doi:10.1002/cjce.24723.
71.
Lin Z, Xu J, Lei Y, Huang X, Ye W, Liang X, et al. Enhanced Li–S Battery Performance Boosted by a Large Surface Area Mesoporous Alumina-Based Interlayer. ACS Appl. Energy Mater. 2022, 5, 15615–15623. [Google Scholar]
72.
Zhao G, Liu S, Zhang X, Zhang Y, Shi H, Liu Y, et al. Construction of Co@N-CNTs grown on N-MoxC nanosheets for separator modification to enhance adsorption and catalytic conversion of polysulfides in Li–S batteries. J. Mater. Chem. A 2023, 11, 1856–1865. [Google Scholar]
73.
Huang M, Jiang X, Xu C, Zhao S, Zhang S, Li G. CoMoO4 nanorods coated separator for high-performance lithium sulfur batteries. Mater. Chem. Phys. 2023, 295, 127182. [Google Scholar]
74.
Shrshr AE, Dong Y, Al-Tahan MA, Han L, Kang X, Guan H, et al. Novel hydrothermal synthesis of Mn-TaS3@rGO nanocomposite as a superior multifunctional mediator for advanced Li-S batteries. J. Colloid Interface Sci. 2023, 633, 1042–1053. [Google Scholar]
75.
Lei D, Shang W, Zhang X, Li Y, Qiao S, Zhong Y, et al. Facile Synthesis of Heterostructured MoS2–MoO3 Nanosheets with Active Electrocatalytic Sites for High-Performance Lithium–Sulfur Batteries. ACS Nano 2021, 15, 20478–20488. [Google Scholar]
76.
Liu Y, Zhao X, Li S, Zhang Q, Wang K, Chen J. Towards High-performance Lithium-Sulfur Batteries: the Modification of Polypropylene Separator by 3D Porous Carbon Structure Embedded with Fe3C/Fe Nanoparticles. Chem. Res. Chin. Univ. 2022, 38, 147–154. [Google Scholar]
77.
Sabbaghi A, Wong CH, Hu X, Lam FLY. Titanium dioxide nanotube arrays (TNTAs) as an effective electrocatalyst interlayer for sustainable high-energy density lithium-sulfur batteries. J. Alloys Compd. 2022, 899, 163268. [Google Scholar]
Creative Commons

© 2024 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (https://creativecommons.org/licenses/by/4.0/).