Article Open Access

Design of Intelligent and Sustainable Manufacturing Production Line for Automobile Wheel Hub

Intelligent and Sustainable Manufacturing. 2024, 1(1), 10003; https://doi.org/10.35534/ism.2024.10003
Minkai Chen 1,2    Yanbin Zhang 1 *    Bo Liu 3    Zongming Zhou 4    Naiqing Zhang 5    Huhu Wang 6    Liqiang Wang 7   
1
School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
2
Qingdao Leading Automation Equipment Co. Ltd., Qingdao 266111, China
3
Sichuan New Aviation Ta Technology Co. Ltd., Shifang 618400, China
4
Hanergy (Qingdao) Lubrication Technology Co. Ltd., Qingdao 266200, China
5
Shanghai Jinzhao Energy Saving Technology Co. Ltd., Shanghai 200436, China
6
College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
7
Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
*
Authors to whom correspondence should be addressed.

Received: 09 Nov 2023    Accepted: 25 Jan 2024    Published: 31 Jan 2024   

Abstract

The wheel hub is an important part of the automobile, and machining affects its service life and driving safety. With the increasing demand for wheel productivity and machining accuracy in the automotive transport sector, automotive wheel production lines are gradually replacing human production. However, the technical difficulties of conventional automotive wheel production lines include insufficient intelligence, low machining precision, and large use of cutting fluid. This paper aims to address these research constraints. The intelligent, sustainable manufacturing production line for automobile wheel hub is designed. First, the machining of automotive wheel hubs is analyzed, and the overall layout of the production line is designed. Next, the process equipment system including the fixture and the minimum quantity lubrication (MQL) system are designed. The fixture achieves self-positioning and clamping functions through a linkage mechanism and a crank–slider mechanism, respectively, and the reliability of the mechanism is analyzed. Finally, the trajectory planning of the robot with dual clamping stations is performed by RobotStodio. Results show the machining parameters for a machining a wheel hub with a diameter of 580 mm are rotational speed of 2500 rpm, cutting depth of 4 mm, feed rate of 0.5 mm/r, and minimum clamping force of 10881.75 N. The average time to move the wheel hub between the roller table and each machine tool is 27 s, a reduction of 6 s compared with the manual handling time. The MQL system effectively reduces the use of cutting fluid. This production line can provide a basis and reference for actual production by reasonably planning the wheel hub production line.

References

1.
Dai XZ, Wang Y, Peng ZP, Cheng HB. Prediction Method of Car Ownership Based on Double Logistic Curve Model. J. Chongqing Jiaotong Univ. Nat. Sci. 2019, 38, 21–26. doi:10.3969/j.issn.1674-0696.2019.11.04.
2.
Baheti U, Guo C, Malkin S. Environmentally conscious cooling and lubrication for grinding. In Proceedings of the International Seminar on Improving Machine Tool Performance, San Sebastian, Spain, July 1998; Volume 2; pp. 643–654.
3.
Klocke F, Eisenblätter G. Dry Cutting. CIRP Ann. Manuf. Technol. 1997, 46, 519–526. [Google Scholar]
4.
Jia D, Li C, Zhang Y, Zhang D, Zhang X. Experimental research on the influence of the jet parameters of minimum quantity lubrication on the lubricating property of Ni-based alloy grinding. Int. J. Adv. Manuf. Technol. 2016, 82, 617–630. [Google Scholar]
5.
Wang C, Xie Y, Qin Z, Lin HS, Yuan YH, Wang QM. Wear and breakage of TiAlN- and TiSiN-coated carbide tools during high-speed milling of hardened steel. Wear 2015, 336, 29–42. [Google Scholar]
6.
Jia D, Li C, Zhang D, Zhang Y, Zhang X. Experimental verification of nanoparticle jet minimum quantity lubrication effectiveness in grinding. J. Nanopart. Res. 2014, 16, 1–15. doi:10.1007/s11051-014-2758-7.
7.
Shi Z, Guo S, Liu H, Li C, Zhang Y, Yang M, et al. Experimental Evaluation of Minimum Quantity Lubrication of Biological Lubricant on Grinding Properties of GH4169 Nickel-base Alloy. Surface Technol. 2021, 50, 71–84. doi:10.16490/j.cnki.issn.1001-3660.2021.12.007.
8.
Zhang YB, Li CH. Grinding mechanism, force prediction model and experimental validation of vegetable oil based nanofluids minimum quantity lubrication. J. Mech. Eng. 2020, 56, 44. [Google Scholar]
9.
Jia DZ, Li CH, Zhang YB, Yang M, Cao HJ, Liu B, et al. Grinding Performance and Surface Morphology Evaluation of Titanium Alloy Using Electric Traction Bio Micro Lubricant. J. Mech. Eng. 2022, 58, 198–211. [Google Scholar]
10.
Li B, Li C, Zhang Y, Wang Y, Yang M, Jia D, et al. Effect of the physical properties of different vegetable oil-based nanofluids on MQLC grinding temperature of Ni-based alloy. Int. J. Adv. Manuf. Technol. 2017, 89, 3459–3474. [Google Scholar]
11.
Li B, Li C, Zhang Y, Wang Y, Jia D, Yang M. Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil. Chin. J. Aeronaut. 2016, 29, 1084–1095. [Google Scholar]
12.
Yokokawa K, Yokokawa M. Meet ISO14000 environmental protection - do not use cutting oil cold air grinding (4) the first cold air the grinding process. Mach. Tools 1999, 43, 121–125. [Google Scholar]
13.
Anqi AE, Li C, Dhahad HA, Sharma K, Attia EA, Abdelrahman A, et al. Effect of combined air cooling and nano enhanced phase change materials on thermal management of lithium-ion batteries. J. Energy Storage 2022, 52, 104906. [Google Scholar]
14.
Liu J, Han R, Zhang L, Guo H. Study on lubricating characteristic and tool wear with water vapor as coolant and lubricant in green cutting. Wear 2007, 262, 442–452. [Google Scholar]
15.
Cui X, Li C, Zhang Y, Ding W, An Q, Liu B, et al. A comparative assessment of force, temperature and wheel wear in sustainable grinding aerospace alloy using bio-lubricant. Front. Mech. Eng. 2022, 18, 3. [Google Scholar]
16.
Cui X, Li C, Zhang Y, Said Z, Debnath S, Sharma S, et al. Grindability of titanium alloy using cryogenic nanolubricant minimum quantity lubrication. J. Manuf. Processes 2022, 80, 273–286. [Google Scholar]
17.
Wang X, Li C, Zhang Y, Ali HM, Sharma S, Li R, et al. Tribology of enhanced turning using biolubricants: A comparative assessment. Tribol. Int. 2022, 174, 107766. [Google Scholar]
18.
Kaynak Y, Karaca HE, Noebe RD, Jawahir IS. Tool-wear analysis in cryogenic machining of NiTi, shape memory alloys: A comparison of tool-wear performance with dry and MQL machining. Wear 2013, 306, 51–63. [Google Scholar]
19.
Zhang X, Li C, Zhang Y, Wang Y, Li B, Yang M, et al. Lubricating property of MQL grinding of Al2O3/SiC mixed nanofluid with different particle sizes and microtopography analysis by cross-correlation. Precis. Eng. 2017, 47, 532–545. [Google Scholar]
20.
Debnath S, Reddy MM, Yi QS. Environmental friendly cutting fluids and cooling techniques in machining: a review. J. Clean. Prod. 2014, 83, 33–47. [Google Scholar]
21.
Li H, Zhang Y, Li C, Zhou Z, Nie X, Chen Y, et al. Cutting fluid corrosion inhibitors from inorganic to organic: Progress and applications. Korean J. Chem. Eng. 2022, 39, 1107–1134. [Google Scholar]
22.
Li HG, Zhang YB, Li CH, Zhou Z, Nie X, Chen Y, et al. Extreme pressure and antiwear additives for lubricant: academic insights and perspectives. Int. J. Adv. Manuf. Technol. 2022, 120, 1–27. [Google Scholar]
23.
Yang Y, Gong Y, Li C, Wen X, Sun J. Mechanical performance of 316L stainless steel by hybrid directed energy deposition and thermal milling process. J. Mater. Process. Technol. 2021, 291, 117023. [Google Scholar]
24.
Hong SY, Zhao Z. Thermal aspects, material considerations and cooling strategies in cryogenic machining. Clean Prod. Processes 1999, 1, 107–116. [Google Scholar]
25.
Wang XM, Zhang JC, Wang XP, Zhang YB, Liu B, Luo L, et al. Effect of nanoparticale volume on grinding peformance of titanium alloy in cryogenic air minimum quantity lubrication. Diam. Abras. Eng. 2020, 40, 23–29. [Google Scholar]
26.
Wang X, Li C, Zhang Y, Ding W, Yang M, Gao T, et al. Vegetable Oil-based Nanofluid Minimum Quantity Lubrication Turning: Academic Review and Perspectives. J. Manuf. Processes 2020, 59, 76–97. [Google Scholar]
27.
Gao T, Zhang Y, Li C, Wang Y, Chen Y, An Q, et al. Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies. Front. Mech. Eng. 2022, 17, 24. [Google Scholar]
28.
Sadeghi MH, Haddad MJ, Tawakoli T, Emami M. Minimal quantity lubrication-MQL in grinding of Ti–6Al–4V titanium alloy.  Int. J. Adv. Manuf. Technol. 2009, 44, 487–500. [Google Scholar]
29.
Yin Q, Li C, Zhang Y, Yang M, Jia D, Hou Y, et al. Spectral analysis and power spectral density evaluation in Al2O3 nanofluid minimum quantity lubrication milling of 45 steel. Int. J. Adv. Manuf. Technol. 2018, 97, 129–145. [Google Scholar]
30.
Zhang Y, Li C, Yang M, Jia D, Wang Y, Li B, et al. Experimental evaluation of cooling performance by friction coefficient and specific friction energy in nanofluid minimum quantity lubrication grinding with different types of vegetable oil. J. Clean. Prod. 2016, 139, 685–705. [Google Scholar]
31.
Tawakoli T, Hadad MJ, Sadeghi MH, Daneshi A, Stöckert S, Rasifard A. An experimental investigation of the effects of workpiece and grinding parameters on minimum quantity lubrication-MQL grinding. Int. J. Mach. Tools Manuf. 2009, 49, 924–932. [Google Scholar]
32.
Duan ZJ, Li CH, Zhang YB, Dong L, Bai XF, Yang M, et al. Milling surface roughness for 7050 aluminum alloy cavity influenced by nozzle position of nanofluid minimum quantity lubrication. Chin. J. Aeronaut. 2021, 34, 33–53. [Google Scholar]
33.
Duan ZJ, Li CH, Zhang YB, Yang M, Gao T, Liu X, et al. Mechanical behavior and Semiempirical force model of aerospace aluminum alloy milling using nano biological lubricant. Front. Mech. Eng. 2022, 18, 4. [Google Scholar]
34.
Lee PH, Nam TS, Li C, Lee SW. Environmentally-Friendly Nano-fluid Minimum Quantity Lubrication (MQL) Meso-scale Grinding Process Using Nano-diamond Particles. In Proceedings of the 2010 International Conference on Manufacturing Automation, Hong Kong, China, 13–15 December 2010.
35.
Yang M, Li C, Said Z, Zhang Y, Li R, Debnath S, et al. Semiempirical heat flux model of hard-brittle bone material in ductile microgrinding. J. Manuf. Processes 2021, 71, 501–514. [Google Scholar]
36.
Jia DZ, Zhang N Q, Liu B, Zhou Z, Wang X, Zhang Y, et al. Particle size distribution characteristics of electrostatic minimum quantity lubrication and grinding surface quality evaluation. Diam. Abras. Eng. 2021, 41, 89–95. doi:10.13394/j.cnki.jgszz.2021.3.0013.
37.
Wu X, Li C, Zhou Z, Nie X, Chen Y, Zhang Y, et al. Circulating purification of cutting fluid: an overview. Int. J. Adv. Manuf. Technol. 2021, 117, 2565–2600. [Google Scholar]
38.
Liu M Z, Li CH, Cao HJ, Zhang S, Chen Y, Liu B, et al. Research Progress and Application of Cryogenic Minimum Quantity Lubrication Machining Technology. China Mech. Eng. 2022, 33, 529–550. [Google Scholar]
39.
Liu MZ, Li CH, Zhang YB, An Q, Yang M, Gao T, et al. Cryogenic minimum quantity lubrication machining: From mechanism to application. Front. Mech. Eng. 2021, 16, 649–697. [Google Scholar]
40.
Zhang YB, Li CH, Jia DZ, Li BK, Wang YG, Yang M, et al. Experimental Evaluation of the Workpiece Surface Quality of MoS2/CNT Nanofluid for Minimal Quantity Lubrication in Grinding. J. Mech. Eng. 2018, 54, 161–170. [Google Scholar]
41.
Xu WH, Li CH, Zhang YB, Ali HM, Sharma S, Li R, et al. Electrostatic atomization minimum quantity lubrication machining: from mechanism to application. Int. J. Extrem. Manuf. 2022, 4, 042003. [Google Scholar]
42.
Sharma P, Said Z, Kumar A, Nizetic S, Pandey A, Hoang AT, et al. Recent advances in machine learning research for nanofluid-based heat transfer in renewable energy system. Energy Fuels 2022, 36, 6626–6658. [Google Scholar]
43.
Yang M, Li CH, Zhang YB, Jia DZ, Zhang XP, Li RZ. A New Model for Predicting Neurosurgery Skull Bone Grinding Temperature Field. J. Mech. Eng. 2018, 54, 215–222. [Google Scholar]
44.
Yang M, Li CH, Zhang YB, Wang YG, Li BK, Li RZ. Theoretical Analysis and Experimental Research on Temperature Field of Microscale Bone Grinding under Nanoparticle Jet Mist Cooling. J. Mech. Eng. 2018, 54, 194–203. [Google Scholar]
45.
Yang M, Li CH, Zhang YB, Wang YG, Li BK, Jia DZ, et al. Research on microscale skull grinding temperature field under different cooling conditions. Appl. Therm. Eng. 2017, 126, 525–537. [Google Scholar]
46.
Wang XM, Zhang J C, Wang XP, Zhang YB, Luo L, Zhao W, et al. Temperature Field Model and Verification of Titanium Alloy Grinding under Different Cooling Conditions. China Mech. Eng. 2021, 32, 572–578. [Google Scholar]
47.
Wang XM, Li CH, Zhang YB, Chen Y, Cao HJ, Liu B, et al. Experimental Evaluation of Wear Mechanism and Grinding Performance of SG Wheel in Machining Nickel-based Alloy GH4169. Surface Technol. 2022, 51, 114. doi:10.16490/j.cnki.issn.1001-3660.2022.09.001.
48.
He F, Zhuang LZ, He GY, Li HX, Yi GY. A356 Aluminum Alloy for Automobile Wheel Hubs-Research Progress and Influence of Alloying Elements on Its Microstructure and Properties. Foundry 2021, 70, 431–437. [Google Scholar]
49.
Shi ZL. An Analysis on the Perspective of China’s Automobile’s Hubcap Industry. Econ. Survey 2004, 03, 61–64. doi:10.15931/j.cnki.1006-1096.2004.03.019.
50.
Niu T, Sun JJ, Zhang YY. Technical Analysis of Automatic Production Line for Flexible Machining of Automobile Wheel Hubs. Mach. Build. Automat. 2017, 46, 216–218. doi.10.19344/j.cnki.issn1671-5276.2017.06.060.
51.
Xu SQ, Zhang YB, Zhou ZM, Liu B, Li CH. Design of automated and cleaner production line for wheel hub in automobile manufacturing. Manuf. Technol. Mach. Tool 2022, 04, 32–37. doi:10.19287/j.mtmt.1005-2402.2022.04.004.
52.
Zheng W, Sun JJ, Niu T, Ma CB, Yu QP, Zhang YY. Design and Analysis of A Kind of Automobile Hub Flexible Machining Fixture. Mach. Des. Res. 2019, 35, 132–136. doi:10.13952/j.cnki.jofmdr.2019.0160.
53.
Zheng W, Sun JJ, Ma CB, Yu QP, Niu T, Ma LB. Analysis on the positioning error of the automotive wheel hub’s flexible machining fixture. J. Mach. Des. 2021, 38, 46–52. doi.10.13841/j.cnki.jxsj.2021.03.007.
54.
Hou YT, Li LC, Gu JN, Mao WY. Vehicle Hub Type Recognition Based on SURF Features. Mach. Des. Manuf. 2021, 08, 5–7. doi:10.19356/j.cnki.1001-3997.2021.08.002.
55.
Zhao HW, Zhao YC, Qi XY, Li F. Research on Surface Defect Inspection Algorithms of Automobile Hub Based on Deep Learning. Modul. Mach. Tool Automat. Manuf. Tech. 2019, 11, 112–115. doi:10.13462/j.cnki.mmtamt.2019.11.028.
56.
Zhu CP, Yang YB. Online Detection Algorithm of Automobile Wheel Surface Defects Based on Improved Faster-RCNN Model. Surface Technol. 2020, 49, 359–365. doi:10.16490/j.cnki.issn.1001-3660.2020.06.044.
57.
Liang YF, Zhu ZK. The design and study of the overall architecture of the intelligent manufacturing system for the automobile hub production line. Ind. Instrum. Automat. 2018, 04, 61–64. doi:10.3969/j.issn.1000-0682.2018.04.015.
58.
Yin CT. Auto wheel manufacturing system design based on the CPS. Manuf. Technol. Mach. Tool 2017, 10, 142–146. doi:10.19287/j.cnki.1005-2402.2017.10.033.
59.
Shi L. Design and analysis of flexible Machining fixture for automobile wheel hub under cutting Force. Internal Combust. Engine Parts 2020, 15, 75–76. doi.10.19475/j.cnki.issn1674-957x.2020.15.029.
60.
Liu DW, Liu HJ, Zhou ZM, Chen Y, Liu B, Zhang NQ, et al. Design and Analysis of Flexible Fixture for Aluminum Alloy Hub. Tool Eng. 2022, 56, 75–82. [Google Scholar]
61.
Das S. Design and Weight Optimization of Aluminium Alloy Wheel. Int. J. Sci. Res. Publ. 2014, 4, 1–12. [Google Scholar]
62.
Mao JH, Zhang YX, Jiang LW, Qu P. Analysis on microstructure and properties of A356 cast aluminum alloy wheel hub. China Metall. 2021, 31, 66–71. [Google Scholar]
63.
Wang ML, Zuo JM, Zhu H, Hu YY. Modeling and dynamic simulation of high speed cutting temperature field based on 3-D finite element analysis. Modern Manuf. Eng. 2010, 02, 80–84. doi.10.16731/j.cnki.1671-3133.2010.02.003.
64.
Davim JP, Sreejith PS, Gomes R, Peixoto C. Experimental studies on drilling of aluminium (AA1050) under dry, minimum quantity of lubricant, and flood-lubricated conditions. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2006, 220, 1605–1611. [Google Scholar]
65.
Tang L, Zhang Y, Li C, Zhou Z, Nie X, Chen Y, et al. Biological stability of water-based cutting fluids: progress and application. Chin. J. Mech. Eng. 2022, 35, 1–24. doi:10.1186/s10033-021-00667-z.
66.
Zhang Z, Sui M, Li C, Zhou Z, Liu B, Chen Y, et al. Residual stress of MoS2 nano-lubricant grinding cemented carbide. Int. J. Adv. Manuf. Technol. 2021. doi:10.1007/s00170-022-08660-z.
67.
Zhang J, Li C, Zhang Y, Yang M, Jia D, Liu G, et al. Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air.  J. Clean. Prod. 2018, 193, 236–248. [Google Scholar]
68.
Bai X, Li C, Dong L, Yin Q. Experimental evaluation of the lubrication performances of different nanofluids for minimum quantity lubrication (MQL) in milling Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 2019, 101, 2621–2632. [Google Scholar]
Creative Commons

© 2024 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (https://creativecommons.org/licenses/by/4.0/).