Article Open Access

A Novel High Step-up DC-DC Converter Using State Space Modelling Technique for Battery Storage Applications

Clean Energy and Sustainability. 2024, 2(1), 10003; https://doi.org/10.35534/ces.2024.10003
1
Department of Electrical and Electronics Engineering, Vignan’s Foundation for Science Technology and Research, Guntur 522213, India
2
Mobility Group, Eaton India Innovation Center LLP, Pune 411028, India
*
Authors to whom correspondence should be addressed.

Received: 28 Nov 2023    Accepted: 08 Jan 2024    Published: 29 Jan 2024   

Abstract

This paper focuses a novel non-isolated coupled inductor based DC-DC converter with excessive VG (voltage gain) is analyzed with a state-space modeling technique. It builds up of using three diodes, three capacitors, an inductor and CI (coupled inductor). The main switch S is turn on due to body diode and voltage stress is reduced at the switch S by using diode D1 and Capacitor C1. This paper focuses on design modelling, mathematical calculations and operation principle of DC-DC converter is discussed with state-space modelling technique. The performance has been presented for two different voltages for EV applications i.e., 12 V, 48 V as input voltages with an high step-up outputs of 66 V and 831.7 V respectively. The converter stability is studied and determined the bode plot along with simulation performance results which are carried out using MATLAB R2022B.

References

1.
Zhang L, Yuan Y, Sun Y, Cheng Y, Wu D, et al. Research on the Intelligent Control Strategy of the Fuel Cell Phase-Shifting Full-Bridge Power Electronics DC-DC Converter. Energy Eng. 2022, 119, 387–405. [Google Scholar]
2.
Narasipuram RP, Mopidevi S. A Novel Hybrid Control Strategy and Dynamic Performance Enhancement of a 3.3 kW GaN–HEMT-Based iL2C Resonant Full-Bridge DC–DC Power Converter Methodology for Electric Vehicle Charging Systems. Energies 2023, 16, 5811. [Google Scholar]
3.
Xue Y, Chang L, Kjaer SB, Bordonau J, Shimizu T. Topologies of single-phase inverters for small distributed power generators: An overview. IEEE Trans. Power Electron. 2004, 19, 1305–1314. [Google Scholar]
4.
Wu TF, Yu TH. Unified approach to developing single-stage power converters. IEEE Trans. Aerosp. Electron. Syst. 1998, 34, 211–223. [Google Scholar]
5.
Dong D, Cvetkovic I, Boroyevich D, Zhang W, Wang R, Mattavelli P. Grid-interface bidirectional converter for residential DC distribution systems—Part one: High-density two-stage topology. IEEE Trans. Power Electron. 2013, 28, 1655–1666. [Google Scholar]
6.
Narasipuram RP, Mopidevi S. A technological overview & design considerations for developing electric vehicle charging stations. J. Energy Storage 2021, 43, 103225. [Google Scholar]
7.
Narasipuram RP. Analysis, identification, and design of robust control techniques for ultra-lift Luo DC-DC converter powered by fuel cell. Int. J. Comput. Aided Eng. Technol. 2021, 14, 102–129. [Google Scholar]
8.
Kim IH, Son YI. Regulation of a DC/DC boost converter under parametric uncertainty and input voltage variation using nested reduced-order PI observers. IEEE Trans. Ind. Electron. 2017, 64, 552–562. [Google Scholar]
9.
Narasipuram RP. Optimal design and analysis of hybrid photovoltaic-fuel cell power generation system for an advanced converter technologies. Int. J. Math. Model. Numer. Optim. 2018, 8, 245–276. [Google Scholar]
10.
Narasipuram RP. Modelling and simulation of automatic controlled solar input single switch high step-up DC-DC converter with less duty ratio. Int. J. Ind. Electron. Drives 2017, 3, 210–218. [Google Scholar]
11.
Wu B, Li S, Smedley KM, Singer S. A family of two switch boosting switched-capacitor converters. IEEE Trans. Power Electron. 2015, 30, 5413–5424. [Google Scholar]
12.
Narasipuram RP, Yadlapalli RT. Performance analysis and design optimisation of 3-⌀ Packed U Cell inverter for industrial drive applications. Int. J. Math. Model. Numer. Optim. 2019, 9, 309–337. [Google Scholar]
13.
Guo Z, Sha D, Liao X, Luo J. Input-series-output-parallel phase-shift full-bridge derived DC-DC converters with auxiliary LC networks to achieve wide zero-voltage switching range. IEEE Trans. Power Electron. 2014, 10, 5081–5086. [Google Scholar]
14.
Wai RJ, Lin CY, Duan RY, Chang YR. High-efficiency DC-DC converter with high voltage gain and reduced switch stress. IEEE Trans. Ind. Electron. 2007, 54, 354–364. [Google Scholar]
15.
Narasipuram R, Karkhanis V, Ellinger M, Saranath KM, Alagarsamy G, Jadhav R, et al. Systems Engineering – A Key Approach to Transportation Electrification; SAE Technical Paper 2024-26-0128; SAE: Warrendale, PA, USA, 2024.
16.
Narasipuram RP, Mopidevi S. Parametric Modelling of Interleaved Resonant DC-DC Converter with Common Secondary Rectifier Circuit for xEV Charging Applications. In Proceedings of the 2023 International Conference on Sustainable Emerging Innovations in Engineering and Technology (ICSEIET), Ghaziabad, India, 14–15 September 2023; pp. 842–846.
Creative Commons

© 2024 by the authors; licensee SCIEPublish, SCISCAN co. Ltd. This article is an open access article distributed under the CC BY license (https://creativecommons.org/licenses/by/4.0/).