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1. Introduction

Quadrotor Unmanned Aerial Vehicles (UAVs) have gained enormous interest because of their low cost, high maneuverability and
simple maintenance. They are used for a wide range of military and civilian tasks. The primary reason for this seems to be the mechanical
simplicity of the aircraft compared to traditional rotorcraft, resulting in significantly lower costs. Although lacking inherent stability,
the simplicity also means that the aircraft is relatively easy to control using automatic feedback, particularly for non-aggressive
maneuvers in calm conditions. For example, [1] demonstrated satisfactory results with a Proportional Integral Derivative (PID)
controller, while authors in [2] were able to control the attitude using just Proportional Derivative (PD) control, employing a quaternion
description. Simulation results have shown that even high-upset angles can be controlled effectively using PD control [3]. Linear
Quadratic Regulator (LQR) control [4,5] can be used to achieve satisfactory trajectory tracking and attitude control.

The operation of quadrotors, especially in urban environments, needs a high degree of safety and reliability. However, quadrotors are
generally built with low-cost components and materials, which increases the probability of occurrence of faults and failures. Hence, the
design of fault-tolerant control systems is required. Fault-tolerant control is defined as a system that possesses the ability to accommodate
failures automatically [6]. A recent review of fault-tolerant control of quadrotors can be found in [7,8] and references therein.

Fault-tolerant control systems are divided into two categories, passive and active [9,10]. Passive fault-tolerant control uses robust
control techniques that assume worst-case conditions [11-15], resulting in conservative controllers with limited performance [16]. In
contrast, active fault-tolerant controllers incorporate a fault detection scheme and a supervision module that can reconfigure the
controller based on the detected fault [10,11,17]. However, implementing active fault-tolerant control systems on small UAVs is
challenging due to their limited computing resources.

Adaptive control provides a compromise between passive and active fault-tolerant control by allowing the reconfiguration of
controller parameters without an explicit fault detection module [18-23]. However, ensuring a transient response guarantee is critical
for adaptive control in fault-tolerant systems, as poor tracking performance may occur before ideal asymptotic convergence if such a
guarantee is absent [24]. Additionally, high-gain feedback cannot be used to achieve transient performance improvement, as it can
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compromise the robustness of the closed-loop system. However, most adaptive control methods focus on the asymptotic performance,
and do not provide transient performance guarantees without using high-gain feedback [25].

One solution to this issue is based on £; adaptive control [26]. The £; adaptive control architecture decouples the estimation loop
from the control loop through the introduction of a low-pass filter. As a result, arbitrarily fast adaptation can be used without sacrificing
system robustness. These characteristics make it suitable for systems with unknown dynamics and subject to possible faults and external
disturbances, such as quadrotors. Successful applications of £, adaptive control to rotorcraft UAVs have been presented [27-37].

A critical situation in rotorcraft control systems is that in case of structural damage of the rotorcraft, the direction of the torque
produced by the propellers can be inverted. For instance, if an axis of a motor is twisted, the torque signs will go in the opposite direction.
Another situation is the inversion of the rotor pitch angle that is directly proportional to the torque. The inversion of the sign of the
torque direction can also result from the inversion of the sign of the rotation due to actuator failures or software faults. This situation
cannot be handled by the standard £; adaptive controller with a single model. Actually, a conservative condition in adaptive control is
that the sign of control effectiveness must be known and should not change [38].

The proposed solution is based on the application of the multiple model £, adaptive controller [39]. The key idea is to design an
L, adaptive controller with a nominal reference model and a set of degraded reference models. The nominal model is the model with
desired dynamics that are optimal regarding some specific criteria. A degraded model does not necessarily meet these specifications. It
is designed to ensure system robustness in the presence of large uncertainties.

This multiple-model £, adaptive control design is capable of expanding the performance of the £, adaptive control schemes to
effectively deal with plant hard failures such as the inversion of the control direction (a long-standing issue that is difficult for a single-model
adaptive controller to deal with) which may be caused by uncertain system structural damage and component (actuator or sensor) failures.

The main contributions of this paper are:

e  Analysis of hard failures effect on quadrotor dynamics that leads to the inversion of the torque.

e  The application of the multiple model £; adaptive controller, which involves designing an £; adaptive controller with a nominal
reference model and a set of degraded reference models to handle situations where the direction of the torque produced by the
propellers can be inverted.

Simulation results show that the multiple model £; adaptive controller outperforms the classical controller with a single nominal
model in case of inversion of the propeller torque direction.

2. &% Adaptive Control of Quadrotors

In this section the main results of £, adaptive control of quadrotors are recalled. The objective is to elaborate the mathematical
framework for quadrotor hard failure analysis.

2.1. Quadrotor Mathematical Model

First is recalled the mathematical model of the quadrotor from [35]. It is based on the Newton-Euler approach with standard
assumptions:

e  Rigid and symmetric body structure,
e  rigid propeller blades,
e  parallel rotor axis in vertical direction.

The basic vehicle configuration, Earth frame, E, and body frame, B, are shown in Figure 1 The body frame has the axes originating
at the center of mass of the vehicle. An inertial coordinate frame is fixed to the Earth and has axes in the conventional North-East-Down
arrangement. It is assumed that the Earth is flat and stationary. Each rotor provides a thrust force, f;, and torque, 7;. These combine to
a vector of moments about the body axis, M = [L, M, N] and a thrust force in the negative z-direction, —T.

The orthogonal rotation matrix Sj, to transform from body frame to Earth frame is

Co Cw CgSw —Sp
Sb = |:S¢59C¢, — C¢Sw C¢C¢, + S¢Sg$w C95¢:|, (1)
C¢,Sg CI/) + S¢‘S"/) C¢,SQS¢ - S¢‘C"/) C9C¢,
where ¢y denotes cos 6, sg denotes sin 8, etc., and (¢, 8,1) is the standard Euler angle roll-pitch-yaw triplet.
The gravitational force vector, Fy, in the body axis is

0 Se
F, =mS, [0] =mg [Cesqb], ()
9 CoCo
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where g is gravitational field constant which is taken as g = 9.81 N kg™
The Newton-Euler equations of motion of the body axes frame are

F =mV+wxmV,
M =lo+wXlw

3)

where V = [U,V, W] is the vector of velocities in the body frame, w = [P, Q, R]” is the vector of angular rates in the body frame, I =
diag(lx, L, Iz) is the moments of inertia matrix, m is the mass of the vehicle, F = F; + [0,0, —T]" is the vector of the forces acting on

the center of mass, and M = [L, M, N]7 is the vector of moments acting about the center of mass.
A general state space model is obtained from [35] with state variables given by
x=[UVWPQRXYZ¢pOoy]. (4)
The resulting model is
—9 se — (QW —RV)
g cgSy — (RU — PW)

T

- + gcgcy — (PV —QU)
L (-1,
I, ( I )QR
M (L —1,
il

= N_(h-k . 5
K ®

(cyco)U + (cySasy — spce )V + (cysacy + SypSe)W

(SIIJCQ)U + (SlpSgsd) + C¢C¢)V + (SngCd) - C“/)S¢‘)W

—SgU + (Cng))V + (C9C¢,)W

P+ (tgsy)Q + (tecy)R
C¢,Q - S¢,R

&)e+ ()

The moments acting on the quadrotor L, M and N and the total force T are given by

T TN < T QT S S S

T 1 1 1 11N
L _ o —¢ o0 2|
M|“ ¢ 0 —¢ 0f|Ts ©)
N —d d -d dllL,

with £ is the arm length d is the rotor diameter.
The general state space formulation can be written as follows

x=fx0), (7
with
U=[Ty T, T3 T,]".

The objective is to compute the control input vector U(t) to force the system outputs to track their desired trajectories using £
adaptive control.
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Figure 1. Quadrotor Frames.

2.2. % Adaptive Control Design

A common procedure in adaptive control design is to linearize the nonlinear model at a given equilibrium or operating point, in
order to develop a linear controller based on the linearized system model, and to augment the linear controller with the adaptive
controller. This allows for better robustness of the system. Actually, it permits for a less “burden” of the adaptive controller through the

use of the prior knowledge of the system [40].
Linearizing about the hover equilibrium state, X.4 and control, u, gives

6x = Adx + Béu ®)
where §x and du represents the small perturbations of the state and control about X, and u,, respectively, where

O1x6 O1xz3 O1x1 —g 0O1xq

A= O1x6  0O1x3 g 011 O1x1
Osxe  Ouxz Osxi Oaxz Ouxa

Ig  Ogxz Osx1 Osx1 Opx1

and
0 0
I[5><11 5><3} 1 1 1 1
B=|_; 01X3| 0 _‘g 0 ‘g .
[ |
0351 |

Consequently, the non-linear model of the quadrotor in equation (7) can be formulated as the following class of MIMO uncertain
systems
X(t) = Apx(t) + Byu,(t) +h(t,x), x(0) =x,,
y() = Cx(),
where A, = A + AA € R™" is an unknown matrix, A € R™™ is a known matrix, AA € R™™ an unknown matrix of the system
dynamics, B, = B(Il,,, + AB) € R™™ is an unknown matrix, B € R™™ is a known matrix, AB € R™™ is an unknown matrix of the

control input uncertainties, C € R™" is a known matrix, x(t) € R" is the state vector which is assumed to be available through
measurement, U, (t) € R™ is the control input vector and h(t, x) € R™ is a vector of unknown nonlinear functions.

This formulation is a general case of MIMO systems, and it is quite understood that for a quadrotor n = 12 and m = 4.
Now consider the control law

©

u, (t) = u(t) + Kix(t), (10)

where K; € R™™ is a gain matrix that defines A,, = A + BK;, where A,, € R™" is a Hurwitz matrix that defines the desired
dynamics of the system. The resulting system to be controlled by the adaptive control is:
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x(t) = A,,x(t) + Bou(t) + h(t, x), (11)
where w = 1,,, + AB andjl(t, x) = AAx(t) + (0 — L, )K;x(t) + h(t, x).
For control design, h(t, x) can be modelled as follows
h(t,x) = B(0x(t) + 6,,(t)) + B0, (t). (12)
Hence, the system in (11) can be parametrized as follows
X(t) = Apx(t) + B(wu(t) + 6x(t) + 0,,()) + B,o, (D), (13)

where 8 € R™ ™ is a matrix of constant unknown parameters representing model uncertainties, g,,,(t) € R™ is an unknown matched
disturbance, ¢, (t) € R" is an unknown unmatched disturbance, and B,, € R™ "™ is a constant matrix such that B"B,, = 0 and
[BB,,;,,] has rank n.

Assumption 1. The unknown model parameters are bounded, i.e., @ € O, where O is a known compact convex set. The system input
gain matrix w is assumed to be an unknown (non-singular) strictly row-diagonally dominant matrix with sgn(w;;) known. Furthermore,
it is assumed that there exists a known compact convex set Q such that w € Q c R™ ™, The disturbances g, (t) and g, (t) are bounded,
i.e., o, € A, and 0, € A, where A,,, and A, are known compact sets. Finally o, (t) and o,,(t) are assumed to be differentiable with
bounded derivatives, i.e. there exist finite real d,;, and d,;,, such that

16, (O, < T, 16, (O, < 6, VE > 0.

We consider the architecture of the £; adaptive controller [26] which is composed of the state predictor, the adaptation law and
the control law (Figure 2).

Reference Control Plant
Input Control Low-Pass | Input State
— > Law > Filter Plant
A
= Predicted
“] State State W—
<l Predictor
7
Estimated
Parameters Adaptation
vl
Law

Figure 2. Block diagram of the £; adaptive controller.

The state predictor is defined by
%(6) = Ap%(6) + B (O(0u(t) + OOX(E) + 6 (6)) + By (), (14)

where @(t), 0,,(t), 6., (t), and &,,(t) are the estimates of the unknown system parameters and () is the estimate of the state vector
x(t).
The adaptation laws are given by
& = I'Proj(®, —(X"PB)Tu"),
0., = T Proj(8,,, —(X"PB)"xT),
0 (t) = T Proj(6,m, —(X"PB)T),
6,(t) = I Proj(é,, —(X"PBB)),

(15)

where X = X — x is the prediction errors, I' > 0 are the adaptation gains, and P is the solution of the algebraic Lyapunov equation
AT P+ PA,, = —Q,Q > 0, while Proj(-,-) denotes the projection operator defined over the sets 0, Q,A,,, and A,,.
To define the control law, we need to introduce some notations. Let
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[ me((ss)) =(sl—A,)? [11337:]
Tm (s) [me (s)
H

um (S) xum (S)

The control law is given by
u(s) = KF(s) (Kgr(s) — 9(s)), (16)

where D(s) = D,(s) + D,(s),D,(s) is the Laplace transformation of D,(t) = @(t)u(t) + 6,,(t), D,(s) = H7 () Hym (s)6,(s) ,
K, = —(CA;'B)! is the pre-filter of the MIMO control law, F(s) is a m X m strictly proper transfer function matrix and K € R"™™,
For analysis purposes, without loss of generality, F(s) is chosen as F(s) = @, where D(s) is a proper stable transfer function.

Hence, the control law can be written:

u(s) = Kﬁ( K,7(s) = 9(s)), (17)

which leads, for all w € £, to a strictly proper stable
G(s) 2 wKD(s)(sHm + wKD(s))_l,

with DC gain G(0) = I,,,.
The L, adaptive controller is subject to the £; norm condition [26]

L = max Nel.,= miaX(Zj 16:5]).

G(s) = (sl—vA4,) 'B(I-G(s)). (18)

where ||, . denotes for the £; norm.
Moreover, the choice of D(s) also needs to ensure that C(s)H;;}(s) is a proper stable transfer matrix.
In the next section is presented the analysis of hard failures effect on quadrotor dynamics that leads to the inversion of the torque.

3. Quadrotor Hard Failures Analysis

If a fault or failure occurs on the system, the unknown parameters may go outside the predefined sets. As a consequence, the
stability condition [26] may become not satisfied. More particularly, in case of a structural, hardware or software failure, the direction
of the force vector of a propeller might be inverted. This is a very critical situation for pitch and roll angles, because the torques N and
M will act in the opposite direction to the desired commands N, and M., and the system will become unstable.

3.1. Case Study: Quadrotor Modeling in Case of Structural Damage or Payload Shift

Quadrotor UAVs are increasingly being used for package delivery. Because the content or the package itself might shift during
the flight, centre of gravity (COG) variation occurs. As the centre of gravity affects the flight dynamics of the quadrotor, the performance
of the UAV is degraded, if the centre of gravity does not coincide with the geometric centre of the quadrotor. The shift of the centre of
gravity might occur also in case of structural damage.

It is straightforward to show that in the case of shift of the centre the expression of the forces and moments acting on the UAV
formulated in (6) will be reformulated as follows

T 1 1 T,
L —e + 5, 0 2+ 6,||[T,
M‘ I -6, 0 ||Ts] (19)
N —d d T,

where 8, and §,, are the distances of shift of the COG that are assumed to be unknown.
It is clear that the sign of the diagonal of the control input depends on the amplitude of the shift of the centre of gravity and on the

sign of —! — §, and —I + &,, consequently. If the centre of gravity shift goes beyond limits, the sign of the diagonals of the input matrix
B can be reverted and leads to the instability of the control system.

3.2. Case Study: Rotor Aerodynamic Modelling in Case of Blades Damage
The thrust T produced by the rotation of the blades can be expressed [41,42] by
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T = C;pA({R)?, (20)

where p is the density of air, A4 is the area captured by rotor, R is the rotor radius, { is the angular speed of the rotor and C; the thrust
coefficient.

When a rotorcraft rolls and pitches, the rotors experience a vertical velocity, leading to a change in the inflow angle. In this case the
thrust coefficient Cy can be related to the vertical velocity V. as [43]

Cr _ a(a) vi+Ve
7= o -5 @

where a is the airfoil polar lift slope, 8, is the geometric blade angle at the tip of the rotor, v; is the induced velocity through the rotor,

tip
and o is the solidity of the disc-the ratio of the surface area of the blades and the rotor disc area. The added lift due to increased flow
velocity magnitude at the blade is small relative to the effect of changing inflow angle, and is ignored [43].

It is possible that blade damage or icing can induce a change in the sign of the thrust coefficient. This could be a consequence of:
e A reduction of the geometric blade angle .
e  An augmentation of the induced velocity v; and/or the vertical velocity V..

e A change of the direction of the polar lift slope a(a), that is a highly nonlinear for some airfoils [43].

Remark 1. Based on the previous analysis, it is necessary to maintain system stability and a minimum of good performance, this is
done through the design of a set of degraded models which become effective when large uncertainties appear on the plant.

4. Multiple Model % Adaptive Control of MIMO Systems

In this section, the multiple model £, adaptive controller first presented in [39] is extended to MIMO systems.

Considering probable faults scenario, a set of plant parameterizations, based on multiple models, is arranged, and the objective is
that the satisfactory controller is selected automatically to deal with every situation. This means that the model which is the best match
of the plant is selected.

The desired performance of each model is made through the design of the pair (Am(i), BL-), fori = 0...M,, where M is the number
of degraded models.

The system in (9) can consequently be parameterized as follows

X(t) =Aypx@)+B; (wiu(t) + 0;x(t) + o (t)) + By (i) Ouci) (),
y(®) = Cx(),
where Ay, ;) € R™™ are known Hurwitz matrices that define the desired dynamics of the system B; € R™™ are the desired input

matrices, w; € R™™ are unknown constant matrices representing the system input gain, B, € R™™™™ are the unmatched
disturbances matrices, 8; € R™*" are matrices of unknown parameters, @,(;)(t) € R™ are unknown matched disturbances, a,,(;) (t) €

(22)

R™ ™ are unknown unmatched disturbances. C € R™ " is the output matrix and y(t) € R™ is the output vector.

Assumption 2. The system input gain matrices w; are assumed to be unknown (non-singular) strictly row-diagonally dominant matrices
with known signs of diagonals.

4.1. Controller Design

The multiple model £, adaptive controller, as shown in Figure 3, is composed of a set of state predictors, a set of adaptation laws,
a set of control laws and a control input selector (switching system).
The state predictors are defined by

£,(6) = A %i(6) + By (@:(0)U() + 8% (6) + 6, (8)) + Buydu (©), (23)

where %;(t) are the predicted states and, 6;(t), &)i(t),ém(i)(t),&m(i)(t), and &(;)(t) are the estimates of the unknown system
parameters and external disturbances. The initial state of the state predictor is equal to the plant state at switching time ¢y, :

X(t) = x(ty).

The adaptation laws are given by
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&; = T Proj(@;, —(X] PB)Tu"),

Oy = T Proj(Omay, —(X{ PB)Tx"),

A A . T
Omey(t) = T Proj(6 ), — (% PB);) )

&u(i) (t) =T PI‘Oj (&u(i), —(i;rPBBu(i))T) )

24

where X; = X; — x are the prediction errors, I; > 0 are the adaptation gains and P is the solution of the algebraic Lyapunov equation
AL P +PA,;=-QQ>0.
To define the control law, let:
[ Hm iy (5) ] — (51— Ang) " [ B
Hyum () m) B.)
[ Hyo (s) -C [ Hyim@ (s) ]
Hym) (5) Hom iy (5)

The control laws are given by
u;(s) = KiF(5) (K1 (s) = 7:(5)), (25)
where  D;(s) = Dy(;(8) + Dp(;)(s), D1(;y(s) are the Laplace transformations of Dy)(t) = @EIU(E) + Gy (1), Dy (s) =

H,_nl(i) (S)Hym iy (8) 0y 1) (5), Ky iy = —(CA,‘,}(L-)BL-)_1 are the pre-filters of the MIMO control laws, F;(s) are m X m strictly proper
transfer function matrices and K € R™*™,

Similarly to £; adaptive control with one model, F;(s) are chosen as F;(s) = DiT(S), where D;(s) are proper stable transfer
functions. Hence, the control laws can be written as
D;(s) A
u () = K22 (Kgor(s) = 0:()), (26)
which leads, for all w € (, to a strictly proper stable
-1
Gi(s) 2 wK;D;(s)(sI,, + w;K;Dy(s))
with DC gain G;(0) = [,,.
The switching logic is defined by
. _ s 12 t t-1) jjo 2
min {Ji = algd? +¢, [ e VIR @1 dr) 27)

where ¢, ¢, and c3 are arbitrary positive reals. The model that minimizes the criterion becomes the selected model.

Model 0
- State predictor %o(t), up(t)
- Adaptation
- Control output

u(t) x(t)
Switching Plant I

Model M
- State predictor Fag (£, U ()
- Adaptation
- Control output

Figure 3. Block diagram of the multiple model £; adaptive controller.
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4.2. Controller Analysis

In this section, the performance of the £; adaptive controller is analysed. More specifically it is shown that:

e  The reference models resulting from perfect knowledge of the uncertainties and a corresponding non-adaptive controller are
stable, subject to some conditions involving the filters F;(s).

e  The prediction errors, i.e., the errors between the states of the plant and those of the state predictors, are bounded.

e  The differences between the states/input of the system and those of the reference systems are proportional to the prediction error

4.2.1. Reference Models Analysis

For a switching system, it is not straightforward to compute the £; norm condition in equation (18). Actually, for LTI systems,
the £, norm is readily computed from the impulse response. However, for a switched system, the impulse response is time dependent
(switching signal-dependent), and computing the £; norm is not as straightforward as in the LTI case. In consequence, the approach
proposed in [44] is extended here to the case of systems with unmatched disturbances.

For each parametrization, the reference model with the nominal parameters of the system is defined by

%, (6) = A X, () + By (070,(6) + 0y () + 0oy (8). (28)
The reference (nominal) control law is given by
Di
u,(;(s) = K; T(S)(Kg(i)ri(s) 70 (S)), (29)

where v(;)(5) = v1;)(s) + V31 (8) 0y (5), 1y (s) are the Laplace transformations of v;;)(s) = w;(O)w;(t) + o1y (£), v, =
H;ql(i)(S)Ho(i)(s)au(i)(s),Kg(i) = —(CiAESBi)_l are the pre-filters of the MIMO control laws, D;(s) are m X m strictly proper
transfer matrices and K; € R™ ™,

Letting ( Agi), Breiys Cri)s Df(i)) be a minimal realization of D;(s) with n(;) states, the reference system dynamics can be written
in state-space form as follows

X, (t) Appy+B6] 0 —Biw; |[x.() B; 0
XO=| Bp6] Ariy Brpwi||Xn O] = [Broy | v () + [Bro) | Kyoyr(©), (30)
XIi(t) Df(i)BiT Cf(i) Df(i)wi J Xli(t) D]:(l) ]_c(i)

X X B; E;

4;
where X, X;, are the states of the filters and the integrators, respectively, and X(0) = [x{,0,0]7. The reference control law can be
written as follows

x,(t)
u.p@®)=[0 0 -1|X;®)|. (31)
¢ x,(t)

The system in (30) and (31) is equivalent to:
)L( = Kl)_( + Eiv(i) + EiKg(i)r(t),

—_ 32
ur(i) = CX. ( )

Remark 2. In this work it is assumed that the switching is arbitrary, i.e., not dwell time or average dwell time. The switching signal has
a dwell time T > 0, if the switching times satisfy t,,.,; — t; = 7, Vk > 0 [45].

Lemma 1. Give an arbitrary matrix Q = QT > 0, if there exists a constant symmetric matrix P > 0 verifying
K-{P + PKL < _Q, Vel € G)i and V(l)i € 'Qi'
then the Lyapunov function V = XTPX guarantees the stability of the switching reference systems in (30) and (31).
This fact is straightforward from the converse Lyapunov theorem for LTI systems.
4.2.2. Transient Performance and Steady-State Performance

In the following Lemma, it is stated that the prediction errors X;(t) and the estimation errors of the unknown parameters are
bounded fori = 0... M.
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Lemma 2. The prediction error of each state predictor, X;(t) is bounded with respect to initial conditions and its bound is given by

%1, < pi o
where
O,
e Amin(POT)
and
(P;)
oz 422 (0 )
™ mm(QL) "m(L)EAm” mll,
(P;)
g Tmax Tt max < maX - )
Amin(Q7) ug " U-(l)”
+4 <max tr(670,) + mag)( tr(w; wl)>
4( max (Gm(l)am(o)+ max (”u(z)%(g))
Im())€Am uti
Proof

Let®; =6, — 0, @) = Omi) — Om(i) Ou(i) = Oui) — Oui), @; = @; — w;, the following error dynamics can be derived from
(13) and (22)

ii = Am(i)ii + Bi(d)iu + 9ix + &m(i)) + &u(i)' (34)
with X;(0) =0
Consider the following Lyapunov functions
Vi=%P% + T tr(070,) + T (@ @) + T (6 0meiy) + T (G0 0uc) (35)
Using the adaptation laws from (24), the derivatives of the Lyapunov functions are bounded as follows
Vi < =% Qi%; + 2T (6], Gty + G Fucr))- (36)
The projection algorithm ensures that 8; € ©,(); € w, Om(i) € A and 6y;y € Ay,
Consequently, it can be written

r?%x(tr(éféi) + tr(d)iT(Z)i) + &,Tn(i)frm(i) + 6'2;(06'11({)) <

4 0/o ! 4 @7
max tr(676;) + max tr(w]w;) | + 4| max (Om@yome) + [ max (00w ouw)
IfV; = 0,y at some time ¢, then it follows that
~TA = Amm(QL)x PX; " o u
X; QX; = —ﬂmax(Q) > 4I" (dom(i)gmrg{ae)zmllo-m(l) ll, + dou(l)or(n{aeﬁ liow ||2>- (38)
Using the bounds in assumption 1, it can be written
T Tm@) + Oy Om@) < dom(% n(f:)aeﬁmiiﬂm(z)iiz + dou(l)df?)aeﬁull%(z)iiz- (39)
Consequently, if V; > —= m(l) , then it follows that
v, <0. (40)

Given that X;(0) = 0, we have



Drones and Autonomous Vehicles 2023, 1, 10004 11 0f 20

max tr(9£r9i)+Lnizé§ tr(w] w;)

Vi(0) < 47 .
" i (P00 om@)r *ma, (ok) 7o) o
Recalling that
Amin(PIK N < X[ PX; <V, @)
which implies that
%1% < Am"mﬁ )
and consequently
1%, < p;. 44

The proof is complete.

The following theorem shows that the states of the adaptive system follow those of the reference system with a bound proportional
to || X Il . The approach is similar to [44], for the case of arbitrary switching.

Theorem. If the reference system is exponentially stable then
X, —xll, <ty X, luy —ull, <3l X,
where k, and k5 are positive constants defined in (57) and (60), respectively.

Proof. The control laws in (26) can be written as

u(s) = — Dos(s)

(wu(s) + vi(s) + 7;(s) — Kgir(s)), (45)

where ¥(;(s) = Dy(;y(S) + D) (s), D1(;)(s) are the Laplace transformations of ¥,y = 07 x(t) + @;(t)u(t) and Dyiy(s) =
Oy (s) + H,_nl(i) (s)Hg(;)(5) Gy (i) (s). Consequently, the closed-loop systems (22) and (45) can be written as follows

X Anipy +Bi8] 0 —Bw|rx B 0 0
*n| = B0 Ar  Brog |[Xn |+ |Br| vy + | Br| 9 — | BrKg | r (46)
xll DfGlT Cf wal xll Df Df Dngl

The error between the state of the reference system and the actual plant, e = X,. — X, can be expressed as

e A(i) + BlOlT 0 _Biwi - e Bi
X11 DfB;r Cf wal. 'xll‘ Df
The control error can also be formulated as follows
e -
e,=u,—u=[0 0 -I]|Xx (48)
_X11_
The prediction error dynamics in (34) can be written as
v, = B] (X — Ap%). (49)
Passing B;r % through the filter (sI + Dy (s)w;) ™Dy (s), we can write
[Xﬁ] [ S+ B | 81 (50)
XIZ Cf wal XIZ Df t

Applying this to the error dynamics in (47) we have
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- B, [ -D/B ]
[ e ] [Am(l) + BLGL 0 Blwl Bch BLDfOJL][ e _I | 2 |
I):(fll I B;6] A; Biw;, 0 0 ||xf1| |BBAm(1)|
[Xu[=| D] ¢ Do 0 0 ||§11H+I—DBAm(L| (51)
Il)'(fZI | 0 0 0 A Brw; |le2J | _]3f]3£r |
1
I | o 0 0 (o8 Dy |77 | p,B' |
and
e,
|Xr1
=[0 0 -1 —C -Dsw;]|X;|+[-D,Bf]% (52)
Ix,
2
lXIZ
Letting
t
_ [-Bi¢; -BDsw;] —DJ;Bz
Hi=| o 0 i = | =BrBi Ay |
t
0 0 [—DB; Amp)
— BBA _
G; = [ ! (l)] L;=[0 C Drw],
DfB Ay
it follows from (51) and (52) that
AR HETE
= e [ +12 (% 53
[xfz] [0 F 11Xl " G, (53)
and
- € Ll ] 54
%, (54)

_ T T - TuT T
where € = [e”,xf,x[ | andX,, = [x],x]] . .
Note that the reference system is stable and the filter represented by F; is a subsystem of the reference system when @ = 0.
Therefore, from Lemma 1, there exists positive definite matrices Q; (w;) > 0 such that for all w; € €,

F'Q, + QF < -L (55)
Let V;(t) = Xf,Q;Xy,, where V;(0) = 0. Differentiating along the system trajectories it follows that

Vi =% (FQ; + QF)X,, + 2%} Q,G;x
< —lxy, ii + 21X, [1Br I X £y, (56)
< —jix; || +BENIXIZ,

where the last line follows from square completion and B = vnmax;, [Q;G;||.
By integrating it is straightforward to show that the following bound holds for X,

Ixpll, < (57)

00
where k; = vnmax;¢; [1Q;G;[|6 and & is the upper bound of %X; defined in Lemma 2.
We now define the Lyapunov functions W; = &' P;&. Differentiating along the system trajectories it follows that
W, =€ (A]P; +P,A)e + 2e"P;H;X;, +2e"PJ;X
<-lel*+2nelBs %y, (58)
S -lelr+pE Iz,
where 8, = (Klmaxiel iP;H;l| + vnmax;, "E’it")
Therefore, the following bound holds
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&l < Ky (59)

where k; = (kymax;e, [IPH;ll + Vnmax;e, IPJ;).
Given the definition of e,, from (54), it follows that
. . = — I TR TR} " Tu s
leull, = <NICIllel,,+ ||Li"||Xf2||£°° +||DsB; | 1 X Iz, 60)
< K3,

where i3 =l C Il k, + (max;¢; IL;[| + max;e, [|D;B] ||)8. This completes the proof.

5. Simulation Results for Quadrotor Control in Case of Inversion of the Torque Direction

In this section, the simulation results for the £, adaptive controller with a single model and multiple models are presented and
compared.

The vehicle that is modelled for use in this work is the Draganfly X-pro quadrotor. The quadrotor arm length is 0.50 m. Each rotor
has two blades. The radius of the rotor is 0.258 m, and the mean chord of the blade is 0.032 m. A 14.8 V lithium-ion polymer battery is
used for supplying the electric power, this being the maximum voltage that can be supplied to a motor [35]. The mass and inertia
parameters are [46,47]:

m = 2.356 kg, I, = 0.1676 kg m?
I, =0.1676 kg m?, I, = 0.29743 kg m?
The rotors are driven by voltages to four electronic motors, the thrust-voltage relationship can be expressed as follows

fi= kfviz, i=1234

where f; is the individual thrust from i th rotor, v; is the individual voltage input and k; = 0'1/12 N The individual torqu