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ABSTRACT: Digital twin technology develops virtual models of objects digitally, simulating their real-world behavior based on data. 
It aims to reduce product development cycles and costs through feedback between the virtual and real worlds, data fusion analysis, and 
iterative decision-making optimization. Traditional manufacturing processes often face challenges such as poor real-time monitoring 
and interaction during machining, difficulties in diagnosing equipment failures, and significant errors in machining. Digital twin 
technology offers a powerful solution to these issues. Initially, a comprehensive review of the research literature was conducted to 
assess the current research scope and trends. This was followed by an explanation of the basic concepts of digital twins and the technical 
pathway for integrating digital twins into intelligent manufacturing including outlining the essential technologies for creating a system 
of interaction between the virtual and real worlds, enabling multimodel fusion, data sensing, algorithm-based prediction, and intelligent 
decision-making. Moreover, the application of digital twins in intelligent manufacturing throughout the product life cycle was 
detailed, covering product design, manufacturing, and service stages. Specifically, in the manufacturing phase, a model based on 
heat conduction theory and visualization was used to construct a time-varying error model for the motion axis, leading to 
experiments predicting the time-varying error in the hole spacing of a workpiece. These experiments achieved a minimum prediction 
error of only 0.2 μm compared to the actual error. By compensating for time-varying errors in real time, the variability in the hole 
spacing error decreased by 69.19%. This paper concludes by summarizing the current state of digital twins in intelligent manufacturing 
and projecting future trends in key technologies, application areas, and data use, providing a basis for further research. 

Keywords: Digital twin; Intelligent Manufacturing; Machining; Sustainable manufacturing 
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1. Introduction 

There has been a growing need to transform the traditional manufacturing industry due to the rising demand for 
digital, networked, and intelligent development. This increasing complexity in disciplines related to mechanical product 
upgrading, manufacturing, and operation and maintenance necessitates close collaboration [1–3]. Different countries, 
such as Germany’s “Industry 4.0,” the United States’ “Industrial Internet,” and China’s “Made in China 2025,” have 
proposed advanced manufacturing development strategies. Currently, the focal point of transformation and upgrading 
in the machinery manufacturing industry is the digitalization and intelligence of the mechanical process system [4]. 

In the context of Industry 1.0 and Industry 2.0, the research and development phase relies on drawings, and traditional 
manufacturing systems use raw materials, parts, and components that are produced through various processes such as 
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machining and assembly. To ensure accuracy in terms of structure, ergonomics, and performance, physical prototypes are 
assembled to validate the virtual model. However, the cost of this validation process is prohibitively high [5]. 

In Industry 3.0, software providers have introduced concepts such as virtual prototyping, digital prototyping, and 
active prototyping [6]. Digital prototyping replaces physical prototypes by using information modeling, providing a 
preview of the product [7]. Among the various digital prototyping concepts, digital modeling, which emphasizes 
complex mapping and contextual relationships between 3D model simulations, is widely used. The use of digital 
prototypes significantly reduces the need for physical prototypes, minimizing failure rates. Virtual simulations based 
on physical manufacturing processes enable early assessment of intelligent manufacturing system (IMS) performance, 
leading to a reduction in reconfiguration costs/losses during physical prototyping of IMS. The incorporation of virtual 
reality greatly enhances the ease and efficiency of IMS design [8]. Furthermore, the transfer of information in digital 
prototypes ensures consistency, thereby streamlining manufacturing system design [9–11]. 

Industry 4.0 has propelled intelligent manufacturing as the future direction for the global manufacturing industry 
[12]. The adoption of new national advanced manufacturing strategies worldwide has resulted in an increased demand 
for the design of new IMS [13–16]. An IMS is a multidomain physical system comprising intelligent machines, 
materials, products, and complex couplings between various components [17–21]. In the digital design process, an IMS 
can be broken down into digital models at various levels of granularity in a digital space, while physical products and 
manufacturing processes exist in a separate physical space [22]. The design process of IMS relies heavily on high-
fidelity network models that bridge the gap between the design and operational domains [23–25]. 

1.1. Necessity of Digital Twins 

There are several challenges in the traditional machining process, including difficulties in collecting dynamic data 
during processing, limited methods for monitoring the process, and poor interactivity. The complex equipment structure 
also leads to troubleshooting difficulties, while the debugging cycle is lengthy and costly. Additionally, predicting 
multifactorial machining errors and determining optimal machining parameters are hindered by the reliance on artificial 
experience and the randomness and uncertainty of the process. Furthermore, finding optimal machining parameters 
consumes a large amount of material and is inefficient. These issues have been recognized [26–30].  

In response to these challenges, digital transformation based on mechanical process systems has shown early 
success. For example, algorithms have been developed to monitor machining states, diagnose machinery faults, predict 
machinery life, forecast machining errors, and optimize machining parameters [31–33]. However, there are still several 
limitations, such as poor interactivity and visualization of the machining process, the reliance on various algorithms 
with individual weaknesses, and the complexity and ambiguity of the optimization process. Multimodel fusion is also 
not well adapted, and most algorithm training is based on historical and empirical data, resulting in limited real-time 
utilization of data. 

As a solution to these limitations, digital twin (DT) technology has emerged. This technology maps physical 
entities to the digital realm, enabling real-time feedback on processing states and facilitating interaction between virtual 
and real mechanical process systems [34,35]. By employing artificial intelligence algorithms and multimodel fusion 
applications, DT technology can predict processing states, forecast equipment failures, and optimize process 
parameters. It achieves these goals through data perception, analysis, prediction, and intelligent decision-making, 
ultimately optimizing product quality and processing resource allocation [36,37]. 

The increasing popularity of DT reflects the inevitable trend of virtual and physical worlds becoming more 
interconnected and integrated. Grieves’ concept of “virtual, digital physical products” and the utilization of DT by 
NASA and the Air Force Research Laboratory mark significant breakthroughs in overcoming limitations [8]. Siemens 
applied DT to Industry 4.0 in 2016, leading to exponential growth in related publications as more researchers dedicated 
themselves to DT [38]. Tao et al. [39] proposed the concept of a DT workshop, providing theoretical support for 
manufacturing applications by discussing its characteristics, composition, operation mechanism, and key technologies. 
To further promote the application of DTs in various domains, Tao et al. [40] extended the existing three-dimensional 
DT model to propose a five-dimensional DT model. Figure 1 illustrates some milestones in DT development. 
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Figure 1. The milestones of DT development. 

This article focuses on DT-enabled intelligent manufacturing as the research subject. First, a qualitative and 
quantitative survey of the literature is conducted, and bibliometric analysis of publication sources, annual publication 
volumes, main publication regions, keyword frequency, and highly cited papers is performed. This analysis identifies 
the current scope and trends of related research. Second, the concept and connotation of DTs are introduced, and the 
knowledge graph and application framework of DT-enabled intelligent manufacturing are mapped out. Both the 
technological paths and core technologies of the key technologies are analyzed, with a particular focus on summarizing 
the technological architecture and hierarchical systems. This article elaborates on the development and application of 
related technologies such as virtual system development, DT model construction, data perception and analysis, decision-
making, and intelligent decision-making. Furthermore, it summarizes the applications of DT-enabled intelligent 
manufacturing throughout the product lifecycle, including product planning, virtual commissioning, processing 
monitoring, predictive equipment maintenance, and processing technology evaluation. Finally, it concludes and 
provides prospects for the current status and future development directions of DT-enabled intelligent manufacturing, 
aiming to serve as a reference for subsequent development. 

2. Methodology 

To gain a deeper understanding of the research trends and progress in DT-enabled intelligent manufacturing, this 
section utilizes two research methods: bibliometric analysis and rooted theory analysis. Bibliometric analysis allows for 
a systematic examination and measurement of thematic structure, hotspots, trends, and other pertinent information from 
multiple perspectives. By utilizing bibliometric theory, this section provides an in-depth analysis of DT-enabled 
intelligent manufacturing by examining the number and trends of publications, research frontiers and hotspots, and 
research evolution lineages. Additionally, this section incorporates the idea of rooting and constructs a theoretical 
framework for DT-enabled intelligent manufacturing research by extracting, categorizing, and integrating keywords, 
abstracts, and research content from relevant literature. 

2.1. Literature Search 

The aim of this work is to explore DT-enabled intelligent manufacturing. Despite previous in-depth investigations 
and related applications conducted by numerous scholars, the concept of DTs in the machining process remains vague. 
Therefore, a literature search on DT-enabled intelligent manufacturing was conducted to organize the related work. The 
methodology is as follows: 
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(1) Bibliometric analysis was performed by identifying papers based on titles, abstracts, and keywords from the Web 
of Science (WOS) core database. 

(2) Recent developments in the literature were reviewed based on the most important keywords. Key themes such as 
the origin, development, key technologies, and implementation architectures of DTs were identified. The 
chronological order was determined, and common definitions and characterization principles were qualitatively 
assessed for similarity. 

(3) Keyword frequencies were listed, common key techniques were evaluated, and examples were reviewed for further 
comprehension. 

(4) By analyzing the information provided by highly cited literature, a macrolevel understanding of the overall 
evolution of DT-related research can be obtained. 

2.2. Bibliometric Analysis 

Bibliometric analysis assesses current trends in the research literature, offering a comprehensive overview and 
structure of the field and providing insights and motivations for future research [41–43]. The analytical process of 
bibliometrics consists of four main steps: search query, dataset identification, data analysis, and data visualization. 
Using the WOS core database and the keywords {“digital twin” AND “manufacturing”} AND {“cutting OR machining”}, 
it was discovered that DT-enabled intelligent manufacturing has been emerging since approximately 2010 and has 
experienced steady growth, particularly in the last 10 years. Since articles from 2024 are still in the publication process, 
the search publication years were set from 2013-1-1 to 2023-12-31. A total of 681 papers related to DTs were obtained. 

2.2.1. Number of Annual Publications 

The initial conceptual model of DTs was first explicitly proposed in 2002. Since then, both foreign and domestic 
academics have conducted extensive research on DTs covering various topics. An analysis of the literature and trends 
in foreign and domestic DT-driven machining research literature after 2013 is illustrated in Figure 2. As shown in Figure 
2, there has been a consistent increase in the overall literature on foreign and domestic DT-driven machining research, 
with a rising trend every year. This indicates a growing interest in domestic and foreign research on DTs in recent years. 

 

Figure 2. Publishes articles per year. 

2.2.2. Distribution of Relevant Literature 

Through a literature analysis, we filtered out the top 20 countries/regions with the greatest number of publications 
since 2013. These findings are presented in Table 1. China has the largest number of publications, totaling 259 papers 
related to DT-enabled intelligent manufacturing. The United States is in second place with 96 papers, followed by 
Germany with 61 papers. Notably, these three countries accounted for 61.1% of the total publications. It should be noted 
that China, the United States, and Germany have placed significant emphasis on DT-enabled intelligent manufacturing 
as part of their national manufacturing programs or initiatives. The United Kingdom, Italy, and South Korea occupy the 
4th, 5th, and 6th positions, respectively. 
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Table 1. Major countries/regions that publish DTs in the WoS database. 

Country/Region Ranking Count 
China 1 259 
USA 2 96 

Germany 3 61 
England 4 61 

Italy 5 40 
South Korea 6 35 

Spain 7 27 
Australia 8 26 
Canada 9 23 

Singapore 10 23 
Sweden 11 23 

India 12 22 
France 13 20 
Greece 14 16 

Denmark 15 15 
New Zealand 16 14 

Japan 17 13 
Portugal 18 9 
Pakistan 19 8 
Austria 20 8 

To analyze the cooperation between publishing countries/regions, we utilized the information visualization tool 
VOSviewer. Figure 3 presents the country/region interconnection diagram, with the radius of the circular coordinate 
points indicating the number of published papers and the thickness of the connecting lines representing the level of 
cooperation. For clarity, only countries/regions with more than 10 published papers were considered in this analysis. 
The results reveal that China, the United States, the United Kingdom, and South Korea have the most collaborations in 
the field of DT-enabled intelligent manufacturing. 
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Figure 3. Country/region correlation map of research related to DT-enabled intelligent manufacturing. 
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2.2.3. Primary Journal Sources 

A survey of the WoS database identified the main sources of DT-driven machining publications, as shown in Table 
2. Sensors has emerged as the journal with the greatest number of publications on DT-driven machining, closely 
followed by IEEE Access and Applied Sciences-Basel. The top eight journals all published 30 or more articles on DT-
enabled intelligent manufacturing. In terms of the journal impact factor, the Journal of Manufacturing Systems is among 
the top 15 journals, with a factor of 12.1. 

A survey of the core databases of WoS reveals the main sources of publications on DT-enabled intelligent 
manufacturing, as displayed in Table 2. The International Journal of Advanced Manufacturing Technology leads the 
pack with the highest number of publications, closely followed by the Journal of Manufacturing Systems and Applied 
Sciences-Basel. The top six journals all have over 30 publications on DT-enabled intelligent manufacturing. In terms 
of the journal impact factor, the IEEE Transactions on Industrial Informatics tops the list among the top 15 journals, 
with a factor of 12.3. 

Table 2. Statistics on DT-driven machining publications. 

Journal Ranking Count 
International Journal of Advanced Manufacturing Technology 1 59 

Journal of Manufacturing Systems 2 52 
Applied Sciences-Basel 3 33 

Journal of Intelligent Manufacturing 4 33 
Robotics and Computer-Integrated Manufacturing 5 33 

Sensors 6 31 
IEEE Access 7 24 

CIRP Annals-Manufacturing Technology 8 19 
International Journal of Computer Integrated Manufacturing 9 18 

International Journal of Production Research 10 18 
Advanced Engineering Informatics 11 17 

Computers in Industry 12 16 
Processes 13 11 
Machines 14 10 

IEEE Transactions on Industrial Informatics 15 7 

2.2.4. Analysis of Highly Cited Papers 

The frequency of citations a paper receives reflects its scientific value and research significance. Table 3 presents the 
top 15 cited papers related to DT-enabled intelligent manufacturing from 2013 to 2023. The most cited paper is Tao et 
al.’s [38] paper titled “DT in Industry: State-of-the-Art,” published in 2019 in the IEEE Transactions on Industrial 
Informatics. This paper provides a comprehensive overview of DT research in the context of intelligent manufacturing, 
examining key components, development status, main applications, current challenges, and future directions. Other highly 
cited papers are listed in Table 3. From the table, it is evident that highly cited papers on DTs mostly focus on intelligent 
manufacturing and are increasingly recognized as crucial drivers for achieving intelligent manufacturing in the future. 

2.2.5. Keyword Analysis 

Research hotspots are crucial for understanding the development trends within a particular field. By importing 
relevant data from the WoS core database into the visualization tool VOSviewer, high-frequency keywords can be 
analyzed to identify research hotspots. Figure 4 presents a co-occurrence map of high-frequency keywords related to 
DT-enabled intelligent manufacturing research. Only terms appearing more than 10 times were considered to ensure 
network clarity. 

From the perspective of keyword distribution, this research primarily focuses on machine learning, models, 
frameworks, and related topics. By examining the correlation between these keywords, it is found that keywords such 
as machine learning, system, model, framework, design, prediction, and data analytics frequently appear in the context 
of DTs. The frequency of keyword usage reflects the common concepts or technologies in DTs. Section 3 reviews and 
discusses the common concepts of DT-enabled intelligent manufacturing, frequently mentioned frameworks, and the 
key enabling technologies for DTs. The keyword analysis highlights the use of DT as a crucial enabling technology for 
intelligent manufacturing. As research progresses, DT will not be limited to technology alone but will include the entire 
lifecycle of the enterprise, involving aspects such as management, manufacturing, sales, and services. 
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Figure 4. DT-enabled intelligent manufacturing keyword contribution mapping. 
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Table 3. Statistics of highly cited papers on DT-driven machining. 

Rank Author Title Journal Citations Year 
1 Tao et al. [38] Digital Twin in Industry: State-of-the-Art IEEE Transactions on Industrial Informatics 1189 2019 
2 Fuller et al. [44] Digital Twin: Enabling Technologies, Challenges and Open Research IEEE Access 541 2020 

3 Alcacer et al. [45] 
Scanning the Industry 4.0: A Literature Review on Technologies for 
Manufacturing Systems 

Engineering Science and Technology-an 
International Journal-Jestech 

479 2019 

4 Qi et al. [46] Enabling technologies and tools for digital twin Journal of Manufacturing Systems 440 2021 
5 Maddikunta et al. [47] Industry 5.0: A survey on enabling technologies and potential applications Journal of Industrial Information Integration 394 2022 

6 Barricelli et al. [48] 
A Survey on Digital Twin: Definitions, Characteristics, Applications, and 
Design Implications 

IEEE Access 389 2019 

7 Jin et al. [49] 
Triboelectric nanogenerator sensors for soft robotics aiming at digital twin 
applications 

Nature Communications 312 2020 

8 Cimino et al. [50] Review of digital twin applications in manufacturing Computers in Industry 309 2019 

9 Lim et al. [51] 
A state-of-the-art survey of Digital Twin: techniques, engineering product 
lifecycle management and business innovation perspectives 

Journal of Intelligent Manufacturing 262 2020 

10 Wei et al. [52] Mechanistic models for additive manufacturing of metallic components Progress in Materials Science 259 2021 

11 Zhang et al. [53] 
Review of job shop scheduling research and its new perspectives under 
Industry 4.0 

Journal of Intelligent Manufacturing 257 2019 

12 Liu et al. [54] 
Digital twin-driven rapid individualised designing of automated flow-shop 
manufacturing system 

International Journal of Production Research 228 2019 

13 Minerva et al. [55] 
Digital Twin in the IoT Context: A Survey on Technical Features, Scenarios, 
and Architectural Models 

Proceedings of the IEEE 205 2020 

14 Leng et al. [5] 
Digital twins-based smart manufacturing system design in Industry 4.0: A 
review 

Journal of Manufacturing Systems 204 2021 

15 Luo et al. [56] 
A hybrid predictive maintenance approach for CNC machine tool driven by 
Digital Twin 

Robotics and Computer-Integrated 
Manufacturing 

203 2020 
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3. Overview of Digital Twins in Intelligent Manufacturing 

DT technology combines the physical world with the digital world, using real-time and historical data to model, 
simulate, and analyze physical objects. Its objective is to optimize performance, improve reliability, and reduce 
maintenance costs. This section first examines the history of the DT concept and then analyzes its five-level architecture 
in DT-enabled intelligent manufacturing. Finally, the key enabling technologies for DT-enabled intelligent manufacturing 
are introduced. 

3.1. Definition of Digital Twins 

In recent years, DT has increasingly been recognized as a crucial innovative technology for intelligent 
manufacturing, driving its development [57]. A DT is a virtual representation that creates and simulates a physical 
entity, process, or system within an information technology platform. By utilizing DTs, the state of physical entities can 
be understood on the information technology platform, and predefined interface components within the physical entity 
can be controlled [58–60]. The concept of DTs was first proposed by Professor Grieves in the United States in 2002. In 
approximately 2010, the U.S. aerospace industry adopted DT technology, building upon model-based systems 
engineering and the advancement of the Internet of Things (IoT). Currently, DTs are recognized as excellent solutions 
for intelligent manufacturing, and extensive research has been conducted by scholars globally. DT technology has also 
made significant breakthroughs in engineering applications, making it a vital technical pillar for realizing intelligent 
manufacturing and industry 4.0. 

Since the advent of DTs, scholars have attempted to define DTs in the context of product design, manufacturing, and 
total lifecycle management. However, due to the diverse range of physical objects involved in manufacturing systems, it 
is challenging to provide a specific definition. Different DT models must be tailored to specific physical objects, such as 
workpieces, manufacturing equipment, factories, and employees, based on their unique structures, functional 
requirements, and modeling strategies. Table 4 presents relevant definitions of DTs in both academia and industry. 

Table 4. Definition of DTs. 

Definition Refs. 
DTs are digital copies of biological or non-biological physical entities. By connecting the physical 
and virtual worlds, data can be transferred seamlessly, allowing virtual entities to coexist with 
physical entities. 

Abdulmotaleb et al. 
[61] 

DTs use physical data, virtual data, and the interaction between them to map all components of the 
product lifecycle. 

Tao et al. [62] 

By integrating design/simulation, manufacturing and usage, the Product DT is able to visualize the entire 
product business process, plan details, avoid problems, close loops and optimize the entire system. 

Zhuang et al. [63] 

A coupled model of real machines running on a cloud platform that uses a combination of data-
driven analysis algorithms and other available physics knowledge to simulate health conditions. 

Lee et al. [64] 

Real-time optimization using digital copies of physical systems. Söderberg et al. [65] 
DTs are virtual information structures that comprehensively describe potential production or actual 
manufactured products from the micro-atomic level to macro-geometry. 

Grieve et al. [66] 

DT is a comprehensive digital representation of a single product, a model that simulates its actual 
behavior in a real environment through models and data. 

Haag et al. [67] 

DT is a technology that adds or extends new capabilities to physical entities through virtual-real 
interaction feedback, data fusion analysis, and iterative decision optimization. 

Li et al. [68] 

3.2. Digital Twin Framework 

The DT framework utilizes extensive data from the machining process as a foundation. Using virtual simulation, 
artificial intelligence, and other technologies in the virtual space, a DT of the mechanical process system is constructed. 
This enables mapping, prediction, optimization, and other functionalities related to the physical entity [69]. This section 
explores the intelligent manufacturing hierarchy enabled by DTs, with a focus on its architecture. 

DT technology is a crucial tool for integrating virtual and real interactions, thereby advancing the development of 
the manufacturing industry. For instance, applying DTs to the process planning of aviation parts involves constructing 
a data- and mechanism-driven process planning framework. This framework includes four key enabling technologies: 
a mechanism-data fusion DT model, a dynamic process knowledge base, process decision-making and evaluation, 
process quality prediction, and process feedback optimization. The framework is validated through an example of 
overall impeller process planning for a miniature turbojet engine [70]. Another example is the application of DT 
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technology in the development of aero-engines. This involves unifying the data storage and management platform to 
overcome information silos and enhance data utilization. Additionally, it accelerates the iteration-verification speed, 
reducing the test time and enhancing the efficiency. Moreover, it breaks down the barriers of traditional simulation 
through multidisciplinary fusion, effectively improving accuracy [71]. Building on these cases, this section describes 
the capabilities of visual presentation, analysis and diagnosis, learning and prediction, and intelligent decision-making in 
mechanical product processing. This is achieved through data acquisition, storage, processing, virtual system construction, 
and algorithmic modeling of the mechanical process system. Importantly, these applications span the entire product 
lifecycle [72]. In this section, an architecture for the DT-enabled intelligent manufacturing hierarchy is constructed, 
comprising the physical layer, data layer, model layer, functional layer, and application layer, as illustrated in Figure 5. 

The physical layer includes various components of the production process, which can be summarized as the 
human‒machine-object-environment relationship. These factors include the operator, machine tools, data sensing 
devices, processing environments, internal logical relationships of equipment, information flow, and other relevant 
factors. The physical layer provides technical support for the data layer. The data layer primarily focuses on data 
perception, storage, and processing. Data perception involves real-time data, mechanism data, process data, historical 
data, etc. Data storage is achieved through the establishment of processing databases and DT model databases. Data 
processing encompasses twin model construction, parameter optimization, and other functions. The data layer supports 
the model layer by providing the necessary data [73].  

The model layer is the central layer of the DT and is divided into mechanism models and data-driven models. Its 
key components include model construction, calibration, fusion, and optimization. The model layer provides support 
for the functional layer [74–76].  

The functional layer refers to the implementation of intelligent manufacturing enabled by DTs. It achieves process 
system visualization, analysis and diagnosis, learning and prediction, intelligent decision-making, and other functionalities 
through single or multimodel coupling. The functional layer provides system support for the application layer. 

The application layer involves the full life cycle management of products and relies on the functional layer for 
related support. It covers various aspects, such as product design, manufacturing, and service phases. This includes 
technology management, product design definition, equipment maintenance, and end-of-life/recycling. 

Hierarchical Architecture for Digital Twin Driven Mechanical Process Systems

Product design 

Application layer Functional layer Model layer Data layer Physical layer

Product manufacturing

Product service

Analytic diagnose

Learning prediction

Intelligent decision

Multidimensional model

Mechanistic model

Data model

Data awareness

Data storage

Data process

Human

Machine

Environment
 

Figure 5. Hierarchical architecture of DT-enabled intelligent manufacturing. 

3.3. Key Enabling Technologies 

The core technologies of DT-enabled intelligent manufacturing include data sensing and processing technology, 
high-fidelity modeling technology, and model-based simulation technology [77,78]. This section examines the 
development and application of virtual systems based on DTs, model construction, data perception, analysis and 
prediction, intelligent decision-making, and other technologies, as shown in Figure 6. Among these technologies, the 
development of a virtual system provides a necessary foundation for the establishment of a DT model. The construction 
and application of the model, on the other hand, provides theoretical support for virtual system construction. 
Additionally, data perception, analysis and prediction, and intelligent decision-making contribute to the static attributes 
of the physical system and related parameters, such as machine tool parameters, workpiece parameters, cutting tool 
parameters, and fixture parameters. Furthermore, these technologies provide data support for model training, including 
empirical data and historical data, of the mechanical process system. 
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Model building Model merging

Model evaluation

Development of virtual system

Application of virtual system

Data perception Intelligent decision

Analytical prediction

related parameters

 real-time data

 

Figure 6. Core technology framework of DT-enabled intelligent manufacturing. 

3.3.1. Virtual System Development and Application 

Three-dimensional visualization serves as the basis for achieving the “virtual integration, to virtual reflection of 
the real” of DTs. The key to achieving three-dimensional visualization lies in the development and application of the 
DT virtual system. The development of a DT virtual system typically involves steps such as virtual scene development, 
simulation system development, and application. 

Virtual scenarios and simulation systems have been developed using different approaches. Li et al. [79] developed 
a computer numerical control (CNC) milling DT simulation system for tool wear. They used SolidWorks 3D modeling, 
the 3D Max rendering model, the Unity 3D design system interface, program interaction, and the TCP/IP protocol for 
real-time data transmission. Zhang et al. [80] used the Adaptable Planning Simulation Platform Software (VE²) to 
visualize and present DTs in IMSs. They verified the effectiveness of their proposed contour error suppression method 
by characterizing the DT of a small 3-axis CNC machine tool. Jiang et al. [81] perceived the machining environment 
through vision sensors and reconstructed the machining scene using machine vision. They achieved collision detection 
of the machine tool by perceiving the machining elements and simulating virtual machine tool operations. Duan et al. 
[82] addressed the issues of poor real-time monitoring and interaction effects in existing CNC machine tools. They 
constructed a blade-rotor DT system for monitoring the blade-rotor test bench in real time, enabling dynamic testing 
and visualization monitoring of the equipment. Refer to Figure 7 for visualization. Sun et al. [83] developed a DT for a 
supercombustion ramjet engine. Their approach allowed hierarchical parameter portrayal of the engine and design of 
real-virtual interactions in multiple environments. 

 
Figure 7. Application examples of virtual system. 
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Although the development of DT virtual systems is diverse, it highlights the lack of a unified standard method for 
connecting different devices. Therefore, the establishment of a unified standard method is currently in the exploratory 
stage and represents a crucial breakthrough point for the future development of DT virtual systems. 

3.3.2. Model Construction 

The DT model serves as the core and foundation of the DT system. A multitude of studies are model-driven and 
complemented by the development of virtual systems [84–88]. Research on DT-driven modeling of mechanical process 
systems can be summarized as the resolution of the underlying problem, the requirements of the modeling methodology, 
and the evaluation of the model [89]. The primary challenges associated with DT models include the absence of suitable 
modeling tools for complex mechanical products, the handling of extensive data in the machining process, and 
synchronization issues regarding the dynamic mapping evolution information of mechanical product DTs throughout 
their life cycles [90]. Consequently, a hierarchical modeling method for DT models of mechanical products based on 
graph databases has emerged. This approach involves creating product subassemblies or component nodes, establishing 
node relationships in a predefined graph database, storing feature information in the nodes, and conducting 
postprocessing on the established DT models [91–93]. Additionally, a dynamic data modeling method based on time-
sequence databases is proposed. Leveraging the structure, attributes, and scale characteristics of product dynamic data, 
this method significantly enhances the performance of data importation, storage, and analysis [94]. Finally, a collaborative 
evolutionary approach for DT ontology modeling of mechanical products is presented. This approach utilizes blockchain 
technology to address the context of multisource heterogeneous evolutionary content and variable collaboration based on 
trust. By employing distributed storage and ensuring the interoperability and interconnection of all modeling operations, 
this method supports conflict identification and lightweight publishing, yielding favorable results [95]. 

The modeling approach for DTs in the context of engine health monitoring and machining processes requires the 
ability to adaptively integrate multidisciplinary and multilevel information. This is essential for constructing high-
fidelity, multiscale, and multidimensional processing models and for facilitating real-time model updates. 

For instance, Sun et al. [96] demonstrated the application of DT technology in the health monitoring of rotating 
turbine components in an aeroengine. They integrated a multifactor model of the engine’s system performance with 
thermal and structural factors to enable cumulative damage monitoring and prediction of the remaining life under 
various influences. Hu et al. [97] proposed the concept of a Wasserstein generative DT model. They utilized the 
Wasserstein generative adversarial network to model health physical samples accurately, ensuring that the adaptive 
requirements were met. This approach facilitated health monitoring, fault detection, and degradation tracking of rotating 
machinery without the need for prior knowledge, historical data, or fault samples. In a similar vein, Liang et al. [98] 
proposed a multidynamic process modeling model using the DT framework. They established a system-oriented 
correlation and interaction mechanism to optimize cutting parameters, visualize process variables, and assess machining 
stability. This integration of data models, kinetic theories, positional variables, and cutting excitation variables enabled 
comprehensive process optimization. Yu et al. [99] developed a nonparametric Bayesian network DT model to monitor 
the health state of complex systems. They also proposed a model update strategy that exhibited strong self-learning 
capabilities and excellent real-time performance, as demonstrated through experiments. Inspired by biomimicry, Liu et al. 
[100] proposed a knowledge-driven DT mimetic modeling method based on the principles of bionics. This method 
effectively integrates geometric, behavioral, and process models, allowing for mutual interactions. It facilitated real-time 
feedback on the machining process and provided assistance in decision-making, as evidenced by the validation conducted 
on an aerospace part. Building upon this work, Liu et al. [101] further elaborated on the adaptive evolution mechanism of 
decision-making models for DT processing systems. They focused on both incremental learning and migration learning. 
Shen et al. [102] proposed an adaptive migration method for DT models to facilitate their migration under complex 
working conditions. By using drilling machining as an example, they verified the effectiveness of model migration, with 
a prediction error of less than 1.5%. Although various DT modeling methods are available, they all revolve around the 
objectives of adaptability, high fidelity, and multifactor fusion. Consideration must be given to the construction of relevant 
models and the realization of multimodel fusion to accommodate different processing conditions [103]. 

The evaluation of DT models is crucial for quantifying factors such as their quality, performance, applicability, 
and value. To address this issue, Wei et al. [104] proposed a comprehensive DT model evaluation index system, as 
depicted in Figure 8. This system outlines the evaluation criteria for DT models and provides a specific quantitative 
calculation reference method, thereby aiding decision-making at all stages of the product’s life cycle in a DT-enabled 
intelligent manufacturing setting. Evaluating DT models in this manner enables a reference guideline for the modeling 
process, allowing for easier updates and improvements to the models. 
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Figure 8. DT technology applicability evaluation index of CNC machine tools. 

3.3.3. Data Perception, Analysis and Prediction, Intelligent Decision-making 

Data perception, analysis, prediction, and intelligent decision-making technology constitute a key aspect of DT 
application. This technology leverages data perception, analysis, and prediction to enable intelligent decision-making for 
mechanical process systems, thereby guiding their development from digitalization to intelligence [105]. In the context of 
DT-enabled intelligent manufacturing, the primary principle involves collecting vast amounts of data generated by the 
processing process. This includes empirical, historical, and real-time data related to the process. With the aid of algorithms 
and models [106–108], the goals of monitoring and predicting the processing state, performing predictive maintenance on 
processing equipment, and optimizing and evaluating the machining and manufacturing process are achieved. 
Additionally, Kaewunruen et al. [109] constructed and analyzed a 6D building information model (BIM) for lifecycle 
management of railroad turnout systems. This modeling approach facilitates the application of data and supports the 
implementation of DT technology. Hence, the ability to perceive and process heterogeneous data from multiple sources 
originating from mechanical process systems is a prerequisite for the application of DT-enabled intelligent manufacturing. 

Analysis and prediction are the fundamental components of intelligent manufacturing applications enabled by DT 
technology. By utilizing the vast amount of data generated by mechanical process systems, algorithms and model training 
can accurately predict the machining state and equipment performance, thereby enhancing the predictability of the overall 
machining process [110–112]. Zhao et al. [113] proposed a novel combination of virtual and real DT techniques for the full 
life cycle management of rolling bearings. They employed an improved CycleGAN model with the Wasserstein distance to 
map simulation data in virtual space to actual measurements in physical space, effectively minimizing the error between the 
two datasets. Subsequently, they utilized the simulation data in an advanced remaining service life prediction method, 
achieving highly accurate predictions for rolling bearings. Similarly, Feng et al. [114] presented a DT-driven intelligent health 
management method aimed at monitoring and evaluating the degradation of gear surfaces. This approach successfully 
predicts the remaining service life of gears and has been validated through two durability tests involving different major 
degradation mechanisms. In addition, Zheng et al. [115] developed a DT-driven intelligent algorithm that combines two 
different force models to identify milling parameters during milling processes. Through milling experiments, the proposed 
algorithm was found to enhance machining quality and efficiency. Finally, Liu et al. [100] proposed a DT modeling approach 
based on bionic principles, constructing multiple DT models, including geometric, behavioral, and process models. The 
feasibility of this method for monitoring and controlling the air rudder machining process was experimentally demonstrated. 

Zhao et al. [116] utilized an intragroup alignment strategy, an intergroup alignment strategy, adversarial learning, and 
a regression alignment strategy to learn domain invariant features and supervision from multiple sources. The proposed 
fusion life prediction method successfully addresses the issue of small samples and achieves accurate prediction of bearing 
health states. Ghosh et al. [73] proposed two computerized systems for building and adapting dDTs. The modular 
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architecture of the proposed DT construction system (DTCS) and DT adaptation system (DTAS) is described in detail. 
The efficacy of the DTCS and DTAS is demonstrated using milling torque signals as an example. Luo et al. [117] 
developed a multidomain unified modeling method for DTs and investigated the mapping strategy between physical and 
digital space. This method improves the operation mode, reduces the probability of sudden failure, and enhances the 
stability of CNC milling machines. The predictive analysis of mechanical process systems through algorithmic models 
and other predictive techniques enables various functions, including fault diagnosis, error suppression, life prediction, 
and parameter optimization. These functions greatly contribute to improving machining accuracy and efficiency.  

Intelligent decision making is a critical aspect of DT-enabled intelligent manufacturing, as it significantly contributes to 
the resource utilization of machining processes. Liu et al. [118] constructed an adaptive DT decision model that can adjust to 
different working conditions. Through drilling experiments, it is proven that the decision model effectively reduces burr 
prediction errors. De Giacomo et al. [119] proposed an approach based on a Markov decision process, inspired by the 
combination of network services, to automatically assign equipment to manufacturing tasks. This approach overcomes the 
limitations of traditional planning methods and provides optimal strategies in terms of cost and quality. The strategies are 
continuously updated to adapt to changing scenarios. The DT decision model achieves machining error suppression and 
dynamic resource scheduling optimization, leading to improved machining accuracy and efficient scheduling strategies. 

The fundamental technologies that enable DT-enabled intelligent manufacturing are complementary in nature. The 
development of virtual systems serves as the underlying foundation for establishing DT models. The construction of these 
models accurately reflects the operational status of real systems, while data perception ensures that the models are 
continuously updated with real-time data. Through analysis and prediction, it becomes possible to forecast the performance 
and anticipate failure risks of real systems, which aids in early intervention and optimizes decision-making. The integration 
of artificial intelligence and machine learning technologies in intelligent decision-making assists decision-makers in 
making more accurate and timely decisions. In summary, the integration of DT into intelligent manufacturing empowers 
companies to optimize operations, enhance production efficiency, reduce costs, and significantly contribute to product 
design and services. As technology continues to progress, DT systems will exhibit vast potential in various sectors, 
thereby becoming a vital tool for driving industrial upgrading and encouraging innovation. 

4. Applications in Machining 

In recent years, the scope of research on DT-driven mechanical process systems has expanded significantly, 
resulting in a wide range of applications. In this section, we examine the utilization of DT-driven mechanical process 
systems at various stages of the product life cycle, including product design, manufacturing, and service. We utilized 
the product full life cycle classification standard as a reference to analyze the incorporation of DT at each stage. We 
present the specific applications of DT technology at each stage, alongside a comprehensive assessment of its strengths 
and weaknesses. This analysis is presented in Figure 9. 
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Figure 9. Specific application of the DT-driven mechanical process system. 
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4.1. Product Design  

In the product design stage, the implementation of DT technology can enhance the intuition and accuracy of the 
design, incorporating user requirements, iterative optimization, and a focus on human-centered product design and 
green sustainable design goals. Additional benefits include virtual sample processing, product performance verification, 
and optimization.  

As an illustration, let us consider the design stage of a semi-industrial combustion furnace. By leveraging Kalman 
filtering, adjustments to the model’s predictions can be made, taking into account potential uncertainties. This allows 
for the realization of predictions regarding combustion chamber performance, reliability assessments, and test program 
optimization, all of which are pivotal in upgrading processing standards and reducing energy consumption [120]. In a 
separate study, Friederich et al. [121] proposed the application of DT in product design and presented a framework for 
DT-driven intelligent product design, focusing on key processes and related technologies. They investigated the 
conceptual theory of product design and described the DT model configuration process based on conceptual design 
[122,123]. Furthermore, they proposed a DT-driven product design evaluation process and evaluation algorithm [124]. 
The authors also investigated the application of a DT-driven green design methodology [125]. By expanding the 
application of DTs to product design, the authors propose a virtual prototype design for CNC machine tools based on 
DTs and successfully model the coupling relationship of complex electromechanical systems of machine tools [126]. 
Moreover, they proposed a lean design process for machine tools based on DTs, which allows for the optimization of 
machine tool feed system parameters [127,128]. 

In addition, the application of DT technology in the product design stage provides valuable guidance for 
determining product solutions, analyzing product parameters, and integrating products with user requirements. 

Tao et al. [62] proposed a novel approach to product design based on the DT method. They analyzed the DT-driven 
product design framework, developed a DT model for design tasks incorporating task analysis and scenario decomposition, 
and proved through experiments that it enhanced product quality. Huang et al. [129] proposed a DT data management 
method for products using blockchain technology to improve the efficiency of data sharing among participants. They 
created a peer-to-peer network and achieved complexity management in the product design process through product design 
workload prediction and functional change propagation analysis methods. Wu et al. [130] proposed a DT complex product 
loop design framework that integrates multidisciplinary collaboration across three phases: conceptual design, detailed 
design, and virtual verification. This framework enables real-time verification and modification of issues arising from 
multidisciplinary integration, thereby minimizing the number of iterations and costs in the design process. This study 
lays a theoretical foundation for bridging the gap between the product design and manufacturing phases. 

In the product design stage, the application of DTs effectively considers user needs and design goals, making 
product program development more intuitive and rational. It also provides the design team with additional opportunities 
for innovation and optimization through virtual machining verification, thus enhancing the efficiency and quality of 
product design. Moreover, this approach significantly reduces the cost of physical processing verification. 

4.2. Product Manufacturing  

During the product manufacturing stage, the application of DT technology aims to achieve quality data acquisition, 
processing quality monitoring and analysis, processing quality prediction, and control functions in the mechanical 
process system. These aspects are crucial for optimizing the product manufacturing process, improving processing 
quality, and increasing processing efficiency [131–133]. This section explores the specific applications of DT-driven 
machining processes and analyses their research progress and limitations. 

4.2.1. Applications in Machining 

The traditional mechanical process system includes a machining process involving a machine tool system, a 
workpiece, a tool, and a fixture. In this section, we will examine the concept of the traditional mechanical process 
system and discuss the specific application of DT-driven mechanical process systems [134]. We will explore the 
application of DTs in machine tool systems, workpieces, tools, fixtures, and their respective functions. 

(1) DTs for Machine Systems 

DT of machine tool systems refers to the application of monitoring the performance status of machine tool systems, 
including machining parameters, machining errors, modals, and other performance and abnormal fault status 
processing, based on DT technology. Machine tool condition monitoring is a significant application of the DT of 
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machine tool systems. Traditional monitoring technologies, such as cameras and sensors, may encounter issues such as 
image delays, delays, and difficulties in determining the source of errors at the physical end. An approach proposed by 
Liu et al. [135] addresses the fusion of heterogeneous data from multiple sources and the lack of semantic information 
through DT modeling of CNC machine tools. It enables comprehensive sensing of the operating status of machine tools, 
thus achieving condition monitoring services. Another study by Guo et al. [128] focused on an improved Gilbert–
Johnson–Keerthi distance algorithm to enhance the detection of collision information between a tool and a machine tool 
during the simulation and monitoring of machine tool motion. This enhancement results in a more realistic display of 
the workpiece shape. The usability and efficiency of the system are verified through an example of machining a typical 
shaft part with a CNC machine tool. This remote interactive simulation of the machine tool demonstrates the benefits 
of the improved algorithm. 

Overall, the DT modeling of CNC machine tools addresses the challenges of fusing multisource heterogeneous 
data and addressing insufficient semantic information. It enables effective condition monitoring services by 
comprehensively sensing the operating status of machine tools and enhances the detection and display of collision 
information during the simulation and monitoring of machine tool motion. 

Realizing the prediction process for abnormal states in machine tool systems is another crucial application of 
machine tool DTs. This includes predicting machine tool performance and component wear degradation. Lv et al. [136] 
confirmed the effectiveness of a self-built, self-assessed, and self-optimized maintenance system based on a bioinspired 
DT machine tool. Through bearing fault diagnosis experiments, this system achieved unmanned maintenance of 
bearings. Yang et al. [137] established a hybrid prediction method for a performance degradation model by constructing 
a meta-motion DT model, analyzing wear theory, and applying algorithms. This method inherits the advantages of both 
data-based prediction and model-based prediction, accurately predicting machine tool transmission units. liu et al. [138] 
proposed a DT approach for motion axes, incorporating a time-varying error model based on heat transfer theory and 
vision modeling. This method predicts and compensates for time-varying errors, reducing error fluctuations by 69.19%, 
as demonstrated by experiments on real-time errors in hole spacing.  

The application of DTs for machine tool systems enables condition monitoring and the prediction of abnormal 
conditions in machine tools. This significantly promotes the safe and efficient machining of mechanical process 
systems. Parameter optimization plays a crucial role in optimizing the machining process. Traditional parameter 
optimization methods rely on manual experience and often involve high levels of uncertainty. The machining process 
DT facilitates error suppression and optimization of machining parameters, thereby laying the foundation for achieving 
high-quality and high-level machining. 

(2) Workpiece DT 

The term “workpiece DT” refers to the application of DT technology in predicting and optimizing various machining 
parameters, machining accuracy, surface roughness, and other characteristics of workpieces during the machining process 
[139]. Ghosh et al. [140] developed a DT structure based on a hidden Markov model to predict the surface roughness 
generated by continuous grinding operations. This DT structure was then implemented to accurately predict the surface 
roughness during continuous grinding operations. Zhu et al. [141] proposed a DT-driven manufacturing framework for 
thin-walled parts. This framework collects and updates DTs of workpieces in different states, providing machine tool 
operators with real-virtual interaction opportunities. The aim is to make the start-up phase faster and more accurate. 
The feasibility of this framework was demonstrated in a case study involving leaf disc machining. 

Wang et al. [142] proposed a DT-driven clamping force control method to improve the machining accuracy of 
thin-walled parts. By establishing a full-factor information model of the clamping system and incorporating dynamic 
information from the clamping process, a virtual space model was constructed using finite element simulation and deep 
neural network algorithms. This method was verified and found to be effective through arithmetic examples. Dai et al. 
[143] proposed an ontology-based information modeling method for prefabricated parts. This method enables the 
association and integration of machined part feature information in the process of virtual-real interaction. This study 
also provides a theoretical foundation for optimizing machining parameters and predicting machining quality.  

Zhang et al. [144] investigated the interaction between machine tools and milling processes from a system 
perspective. They developed an integrated model of the ball screw feeding system and the milling process, which 
enabled multiphysics field simulation of the entire system considering multisource harmonics. This approach is highly 
significant for studying machine tools and milling processes as a coupled whole. Li et al. [145] presented an aeroengine 
assembly quality assessment method based on cumulative block information modeling and a process-oriented assembly 
twin. They established an analytical DT platform that integrates modules for measurement, a digital design model, a 
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geometric deviation analysis model, an information model, and a database. This platform enables quality analysis at the 
assembly operation stage and lays the foundation for machining key aeroengine components.  

Wang et al. [146] proposed a novel method for rapidly calculating engine blade strains, aiming to overcome the 
technical challenges of real-time calculations in DTs and achieve simultaneous mapping of engine blade health states. 
The accuracy and effectiveness of this method were verified through engine blade strain measurement experiments and 
numerical simulations. The results demonstrated a significant improvement in real-time performance, with a speed 
increase of approximately 1444 times compared to that of conventional finite element methods. The minimum run time 
achieved was 0.91 seconds. Furthermore, the minimum relative error was 0.11%, and the average relative error was less 
than 0.76%. The application of workpiece DTs facilitates the optimization of machining parameters, the prediction of 
surface roughness, and the optimization of machining decisions. These functions have a significant impact on the 
machining of special workpieces, such as aerospace thin-walled parts, aero-engine blades, and case parts. 

(3) Tool DT 

Tool DT refers to the application of DT technology in researching and analyzing tool wear monitoring and 
prediction, selection decisions, and tool service in the machining process [147–149]. First, monitoring and predicting 
tool wear can effectively reduce machining errors and improve efficiency [150]. Qiao et al. [151] proposed a data-
driven DT model and a hybrid model prediction method based on deep learning, which demonstrated the accuracy of 
tool wear prediction through the study of vibration data from a milling machine. In addition, Natarajan et al. [152] 
proposed a technique that utilizes DTs to construct a balanced virtual instrumentation framework that is perfectly 
matched to the physical system to achieve exceptional accuracy in inspecting and predicting tool conditions. The tool 
condition monitoring system deploys the DT model to predict different tool conditions based on sensory data. Deebak 
et al. [153] presented a deep migration learning-based DT-assisted troubleshooting method for analyzing the operating 
conditions of machining tools. Furthermore, the system develops an intelligent toolholder that integrates a type K 
thermocouple and a cloud data acquisition system on a WiFi module. Analytical studies confirm that this intelligent 
tool holder provides higher accuracy and enables the optimization of milling and drilling operations of cutting tools. 
Finally, Zhuang et al. [154] proposed a DT-based approach that realizes the physical-virtual symmetry of the DT model 
by constructing a symmetric virtual tooling system that exactly matches the actual tooling system. This approach 
accurately maps the real-time state of tool wear. 

Zhang et al. [155] proposed a framework for model updating based on DTs, which is used to obtain an accurate 
tool wear model for predicting and managing machining processes. Xia et al. [156] presented a kinematic model and 
trajectory planning method for the UR10 robot by establishing a DT unit in the inspection system. The authors utilized 
Unity3D software to create the DT environment for the inspection system. Through socket communication, a 
synchronous mapping function is established between the robot’s digital model and the physical entity, enabling 
complex tool edge image acquisition trajectory planning, precise teaching of the virtual scene, digital monitoring of the 
inspection process, and optimization of the system model. The stability and effectiveness of robot kinematics, trajectory 
planning, and interactive communication in the tool wear image inspection environment are verified. Chen et al. [157] 
utilized a bionic digital brain as the intelligent core of the DT double-cutting machining framework, which includes 
monitoring, prediction, optimization, and control. They demonstrated the powerful information processing capabilities 
of DTs and presented real-time precision intelligent machining results. Liu et al. [158] proposed a DT-driven method 
for predicting surface roughness and adaptively optimizing process parameters. When the predicted surface roughness 
based on real-time data does not meet the machining requirements, the DT system issues a warning and adaptively 
optimizes the cutting parameters based on the current tool wear prediction. The effectiveness and advancement of the 
proposed method are verified through the development of a DT system for process optimization and a large number of 
cutting tests. This approach combines real-time monitoring, accurate prediction, and optimization decision-making in 
the machining process, resolving the issues of inconsistent quality and efficiency. Song et al. [159] addressed the 
problem of tool wear-induced vibration and deformation in the milling of thin-walled parts. They proposed a DT tool 
wear state recognition method using feature vector extraction, hyperparameter optimization, and support vector machine 
algorithms. The experimental results show a recognition rate of over 90% for the system. However, due to limitations 
in the support vector machine algorithm itself, the method exhibits weak generalizability and is not applicable to large 
sample sizes. Additionally, Zhang et al. [160] incorporated a deep migration learning strategy and edge distribution rule 
into the DT tool model to achieve target domain training with small samples. This approach improves the accuracy and 
appropriateness of the model and resolves the issue of small samples under variable working conditions. 
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Second, in terms of tooling services, DT-based tooling services enable the efficient utilization of tooling. Xie et al. 
[161] established a tool DT model consisting of five stages: tool market investigation, research and development, 
production planning, manufacturing, customer use and service. This model allows real-time status monitoring of cutting 
tools, visualization of tool information, parameter optimization, maintenance strategies, and virtual maintenance. The 
application of tool DTs is one of the most widely used and extensively researched applications of DT-driven mechanical 
process systems. The achievement of tool wear state monitoring and prediction plays a crucial role in reducing 
machining errors. Research on DT-based tool services, tool selection strategies, and tool change speeds has entered the 
exploration stage. 

(4) Fixture DT 

Fixture DT refers to the application of DT-based technology to the control of the fixture itself and the clamping 
force control during machining. Wang et al. [142] designed a DT dual-drive clamping force control method by 
integrating a neural network and finite element simulation to address the problem of machining deformation caused by 
inadequate fixture clamping in traditional machining processes. Through experiments considering the full-factor 
information of the clamping system, they proved the effectiveness of the method. Weckx et al. [162] proposed a cloud-
based DT for monitoring high-performance composite machining adaptive clamping devices by incorporating computer 
vision-related technology. This implementation achieved functions such as tool wear monitoring based on the clamping 
force and the evaluation of clamping device operation. Additionally, they innovatively developed the function of 
automatically triggering monitoring algorithms for the transmission of machining signals to the cloud.  

The application of fixture DTs allows for the optimization of clamping parameters, the prediction of clamping 
stability, and the control of clamping force during machining. These capabilities contribute to improving the stability 
of clamping and enhancing machining accuracy. By leveraging key technologies such as analysis and prediction, 
decision-making optimization, and fault processing, the application of fixture DTs significantly improves the efficiency 
and accuracy of machining. Implementing error prediction in the machining process is an essential step to avoid 
downtime risks and ensure machining efficiency. Anomaly detection based on DT technology provides a guarantee for 
improving efficiency and accuracy. The integration of DTs in the machining process enables the suppression of 
machining errors, effectively improving machining accuracy and ensuring machining safety. 

4.2.2. Deficiencies 

In the product manufacturing stage, the implementation of DT technology has greatly facilitated the transformation 
and upgrading of mechanical process systems. However, there are still certain limitations that need to be addressed. 
First, research on DT-driven mechanical process systems requires a substantial amount of data. The existing research 
predominantly relies on a single method of data monitoring, which incurs high acquisition costs, low accuracy, poor 
real-time performance, and a limited amount of data [154]. Second, the research on DT-driven mechanical process 
systems is often limited to specific research objects, processes, working conditions, and machining scenarios, rendering 
it inapplicable in a universal context [163]. Finally, while there is a significant amount of research on condition 
monitoring and virtual simulation in DT-driven mechanical process systems, there is a lack of research on algorithms, 
models, and mechanism analysis. Consequently, the application of algorithms is often constrained by their inherent 
limitations, which restrict the conditions under which they can be implemented [164]. Therefore, there is a crucial need 
for improvements in the application of DT-driven mechanical process systems. 

4.3. Product Service 

From the previous discussion on the specific application of DT-driven mechanical process systems and the analysis 
of DT application in machining processes, it is evident that DT technology enables functions such as machining status 
monitoring, prediction, and process optimization. Building on this, this section will explore the application of DTs in 
the product service stage, focusing on fault detection and predictive maintenance of mechanical process systems, 
machining process evaluation and optimization, and product sustainable manufacturing and operation and maintenance. 

4.3.1. Fault Diagnosis and Predictive Maintenance 

Traditional preventive maintenance, with its high cost and low efficiency [165,166], is being challenged by the 
emergence of predictive equipment maintenance. This approach, based on DT technology, allows for the prediction of 
maintenance risks and effectively reduces the chances of equipment failure. By improving maintenance efficiency, it is 
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clear that predictive maintenance is the future trend for mechanical process system maintenance [167–169]. To optimize 
equipment failure monitoring, prediction, and maintenance decisions, He et al. [170] proposed a complex equipment 
health management approach. A hybrid framework based on DT modeling and DT data, as presented by Luo et al. [56] 
further enhances this optimization. Building on this framework, a hybrid predictive maintenance algorithm was 
proposed, and its effectiveness was verified through examples. In the quest for effective DT-based predictive 
maintenance systems, Van et al. [171] used domain analysis to model key features and synthesize relevant literature. 
The result was a DT-based predictive maintenance system that derives three views: a user view, an architecture view, 
and a deployment view. The analysis demonstrated the potential of creating a reference architecture in the field of DT-
based predictive maintenance. 

Zhong et al. [168] summarized the growing research interest in predictive maintenance based on DTs in the field 
of manufacturing. This paper proposes a gap between DT technology and predictive maintenance technology, 
emphasizing the importance of utilizing DT technology to achieve effective predictive maintenance. Furthermore, a 
predictive maintenance approach based on DTs is presented, highlighting the differences between this approach and 
traditional predictive maintenance. To address fault diagnosis in both the development and maintenance phases, Xu et 
al. [172] proposed a two-stage DT-assisted method based on deep migration learning. This method identifies potential 
problems that may not have been considered during the design phase and uses deep neural network-based diagnostic 
models for fault diagnosis. By employing deep migratory learning, previously trained diagnostic models can be migrated 
from virtual space to physical space for real-time monitoring and predictive maintenance. This ensures diagnostic 
accuracy and prevents unnecessary delays. Predictive maintenance based on DTs enables an “ex ante” preventive mode 
for mechanical process systems, effectively reducing machining losses and improving efficiency compared to the 
traditional “ex post” repair and fix mode.  

4.3.2. Process Evaluation and Optimization 

The process evaluation of machining processes is crucial for enhancing process execution and reducing product 
development cycles [173]. Liu et al. [124] proposed a data-driven machining process evaluation method using DTs by 
aligning machining process data with process design data. This method successfully evaluated the machining process 
for key components of marine diesel engines. Pereverzev et al. [174] applied DT technology fused with dynamic 
programming to test and iteratively optimize the grinding cycle of a CNC machine. This optimization ensured consistent 
quality of machined parts by designing the optimal feed control cycle. To optimize the CNC machining process, Vishnu 
et al. [175] simulated, predicted, and optimized the workpiece surface roughness in the process planning and machining 
stages. They developed a surface roughness prediction model based on DTs, providing theoretical support for the 
development of optimization technology.  

Zhu et al. [141] established a DT model for the workpiece and utilized algorithmic optimization to provide real-
time machining information to the machine operator. By optimizing the tool direction and tool path after each work 
step, they demonstrated the effectiveness of their method through machining examples. Chen et al. [176] proposed a 
DT-driven method to suppress delamination damage in real time by analyzing the relationship between the thrust 
increase caused by tool wear and CFRP delamination. Through extensive drilling experiments, they input cutting 
parameters and thrust signals into the DT model, Gaussian process regression, and mathematical modeling to predict 
current tool wear and thrust profiles, respectively. The results showed excellent real-time prediction, with maximum errors 
of 4.1% and 4.2% for tool wear and exit thrust prediction, respectively. Compared to conventional drilling, DT provided 
closed-loop feedback on the time-varying critical feed rate for each hole, resulting in no delamination mode I and up to 
48.4% suppression of delamination mode III. This intelligent virtual-real linkage in the CFRP drilling process offers 
important theoretical support for the effective suppression of delamination damage in automated production processes.  

Optimizing machining processes holds significant value in improving machining performance, accuracy, and 
efficiency. Utilizing DT technology provides a new approach to mechanical process optimization. Implementing DT-
based machining process evaluation and optimization positively impacts reducing machining error rates, formulating 
optimal machining process routes, and enhancing machining efficiency. 

4.3.3. Product Sustainable Manufacturing and O&M Management 

With the introduction of China’s “Carbon Peak Carbon Neutral” initiative and other major strategic decisions, the 
green and sustainable product manufacturing mode has become the mainstream approach in the machinery manufacturing 
industry [177–180]. The entire life cycle of sustainable manufacturing is supported by a model that includes product 
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material selection, sustainable disassembly, end-of-life recycling, and remanufacturing, all based on DT technology. This 
model provides technical support for achieving a green and sustainable development model through the monitoring and 
evaluation of energy consumption during the processing process and visualization of green features [181]. 

Xiang et al. [182] proposed a DT-based approach for selecting sustainable materials optimally, with the aim of 
achieving sustainable manufacturing over a specific period. This is done through simulating and evaluating the 
performance of sustainable materials. Li et al. [183] proposed a DT-driven method for evaluating sustainable performance 
in intelligent manufacturing and confirmed the effectiveness of this approach through testing. Kerin et al. [184] proposed 
a product DT model that utilizes data from different instances in the product life cycle to optimize remanufacturing plans. 
This includes predicting residual product life through neural networks and employing techniques such as bee algorithms 
for decision-making, ultimately achieving optimal product remanufacturing decisions. Sustainable manufacturing plays a 
crucial role in building an ecological civilization, and the adoption of DTs in the sustainable manufacturing of products 
promotes the transformation of the manufacturing industry toward sustainability and intelligence. This is achieved through 
the monitoring and evaluation of energy consumption during the processing process, the characterization of sustainable 
features, and the establishment of mechanisms for end-of-life recycling, among other technological means. 

It is crucial to understand the operation and maintenance of the mechanical process system during the product service 
stage. The operation and maintenance service system driven by DTs is explained in terms of pattern updating, data 
application, and system interaction. For instance, this article explores the application of DTs in the operation and 
maintenance of aviation engines [185], focusing on accurate monitoring, fault diagnosis, performance prediction, control 
optimization, and other functions. Fu et al. [186] identified the time and cost inefficiencies of traditional design, 
manufacturing, and maintenance processes as inefficient due to their independent operation and management. To address 
these inefficiencies, a unified platform is needed for efficient and intelligent design, manufacturing, and maintenance of 
machinery, equipment, and systems. To achieve this goal, an information-physical combinatorial framework is proposed 
that enables more accurate design, defect-free manufacturing, smarter maintenance, and advanced sensing technologies. 

Chen et al. [187] addressed the problems with the traditional “regular maintenance and fault repair” mode for mechanical 
equipment, including high costs and low efficiency. An intelligent mode of “predictive maintenance” and “condition 
maintenance” is proposed to achieve predictive maintenance, life prediction of industrial equipment, and improved virtual-
realistic interaction and autonomous accurate service. Huang er al. [188] proposed an operation and maintenance service 
system that included virtual-real space interaction, data-driven knowledge updating, and real-time product diagnosis 
and maintenance. The effectiveness of this system is verified through a machine tool performance analysis test. 

It is highlighted that operation and maintenance management based on DTs is significant for mechanical process 
systems. The establishment of a digital operation and maintenance system reduces the impact of unpredictable factors, 
such as the aging and wear of equipment and structural deviations. This enables more accurate and efficient operation 
and maintenance compared to traditional manual experience-based systems [189]. 

Throughout the product life cycle, the application of DT technology can achieve collaborative optimization of 
product design and manufacturing, improve production efficiency and product quality, and continuously create value 
through digital services to meet customer needs and enhance competitiveness. With the continuous development and 
popularization of digital DT-enabled intelligent manufacturing, its application in the product field is expected to become 
more extensive, offering greater innovation and development opportunities for enterprises. 

5. Conclusions 

The research significance and current status, key technologies, and specific applications of DT-enabled machining 
are analyzed in the context of the development process of DT-enabled intelligent manufacturing. With the rapid 
integration of information technology and operational technology in the industrial field, significant progress has been 
made in manufacturing intelligence. DT-driven applications, as a core element of future manufacturing, will challenge 
and transform the foundation of manufacturing systems and operations. The convergence of the digital and physical 
worlds enables informed decision-making in all aspects of manufacturing operations, resulting in a data-driven 
intelligent manufacturing environment. The conclusions of this paper are as follows: 

(1) The development history of DT-enabled intelligent manufacturing can be examined through the analysis of the 
volume and trend of publications over time. By analyzing the research frontiers and hotspots, we can highlight the 
concerns of practical applications related to DT-enabled intelligent manufacturing research. Bibliometric analysis 
revealed a surge in the number of articles on DT-enabled intelligent manufacturing since 2019, generating 
significant interest in the industry. This analysis provides clues and support for further exploration and research. 
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(2) DTs play a vital role in enabling intelligent manufacturing by facilitating interactions between the physical and 
virtual worlds of mechanical process systems. It promotes the digital transformation of mechanical process systems 
and paves the way for cyber-physical integration. The theoretical framework of the key enabling technologies of 
DT-enabled intelligent manufacturing revolves around the architecture of the five major layers: physical, data, 
model, function, and application. These key enabling technologies are mutually complementary. The basic research 
route includes data-driven approaches, model simulation, algorithm analysis, intelligent decision-making, and 
experimental verification. As technology continues to advance, DT systems will exhibit significant potential in 
various fields, becoming a crucial tool for promoting industrial upgrading and innovation. However, there is 
currently a lack of common definitions and methods for the core technologies of DTs, including data types, virtual 
system construction, and the integration and selection of models and algorithms. 

(3) The application of DT-driven mechanical process systems has yielded significant results, enabling various 
functions such as mechanical product design, processing status monitoring, processing error suppression, 
equipment predictive maintenance, processing process evaluation, and processing parameter optimization. 
Throughout the entire product life cycle, the use of DT technology enables the collaborative optimization of 
product design, manufacturing, and service, resulting in improved production efficiency, product quality, and 
customer satisfaction. During the product manufacturing stage, a time-varying error model of the motion axis is 
constructed based on heat conduction theory and a visualization model. Through experimental predictions of the 
time-varying error in the hole distance of workpieces, it has been found that the lowest discrepancy between the 
predicted and actual errors is only 0.2 μm. By compensating for real-time time-varying errors, the fluctuation range 
of the hole distance errors is reduced by 69.19%. 

(4) The development of DT-driven mechanical process systems continues to play a pivotal role in the digital 
transformation of the manufacturing industry. The “DT + emerging technologies” model holds the potential for even 
greater possibilities. However, the current stage is marked by a paradox wherein the demand for more advanced levels 
of technology, methodology, system integration, and skilled professional clashes with the limited availability of 
industrial software and hardware infrastructure. This bottleneck poses a challenge to the rapid advancement of DTs. 

6. Prospects 

The application of DTs remains a critical technology for intelligent manufacturing. To address the challenges 
related to DT empowerment in intelligent manufacturing, it is necessary to examine existing accomplishments, assess 
the technical framework, and evaluate the current application status. The future development directions are as follows: 

(1) As the manufacturing industry undergoes transformation and upgrades, the importance of intelligent manufacturing 
continues to grow. Intelligent manufacturing, combined with DT and its intelligent sensing and simulation 
capabilities, enhances the efficiency and intelligence of product production. The rapid advancement of enabling 
technologies such as cloud computing, big data, artificial intelligence, the Internet of Things, hypernetworks, 
blockchain, and 5G has led to the diverse development of DT-enabled intelligent manufacturing. The fusion of 
DTs with emerging technologies holds tremendous potential for further advancements in intelligent manufacturing. 

(2) The efficient utilization of data is a crucial objective of DT-enabled intelligent manufacturing. The collection, 
processing, and storage of heterogeneous data from various sources play a vital role in achieving this goal. The 
widespread adoption of systematic DT-enabled intelligent manufacturing applications is expected. The limited 
functionality of localized DT applications can be overcome by advancing DTs from the component level to the 
machine level, production line level, and even the DT ecosystem level. This evolution will positively impact the 
digital transformation of the manufacturing industry. 

(3) The concept of sustainability has gained significant importance, and integrating it with intelligent manufacturing 
to achieve sustainable intelligent manufacturing has become a priority in future research. As a sustainable 
technology, DT helps reduce emissions throughout a product’s life cycle. This aligns with the requirements of 
intelligent manufacturing and comprehensive sustainable development, taking into account environmental, 
economic, and social perspectives. 

(4) Intelligent manufacturing is widely recognized as a crucial area for future research and applications. By applying 
cutting-edge technologies to traditional products in manufacturing and services, intelligent manufacturing adds 
value to a broad range of products and systems. Its potential can be further maximized by integrating it with other 
technologies such as intelligent transportation, intelligent energy/grid, intelligent buildings, intelligent healthcare, 
intelligent cities, and intelligent societies. 
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